Isotropic Kähler hyperbolic twistor spaces

D.E. Blair ${ }^{\text {a,* }}$, J. Davidov ${ }^{\text {b }}$, O. Muškarov ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
${ }^{\mathrm{b}}$ Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria

Received 21 October 2003; received in revised form 10 February 2004; accepted 10 February 2004
Dedicated to Professor Bang-Yen Chen on his 60th birthday
Available online 19 March 2004

Abstract

In this paper we study two natural indefinite almost Hermitian structures on the hyperbolic twistor space of a four-manifold endowed with a neutral metric. We show that only one of these structures can be isotropic Kähler and obtain the precise geometric conditions on the base manifold ensuring this property. © 2004 Elsevier B.V. All rights reserved.

MSC: 53C28; 53C50; 53C55
$J G P$ SC: Spinors and twistors
Keywords: Isotropic Kähler manifolds; Indefinite Kähler manifolds; Hyperbolic twistor spaces

1. Introduction

Let (M, J, g) be an almost Hermitian manifold with an almost complex structure J and compatible Riemannian metric g, i.e. $g(X, Y)=g(J X, J Y)$. If J is parallel with respect to the Levi-Civita connection ∇ of g, the structure is Kähler and this can be recognised by the vanishing of the square norm of ∇J, i.e. $\|\nabla J\|^{2}=0$, equivalently by $\|\nabla \Omega\|^{2}=0$, where Ω is the fundamental two-form of the almost Hermitian structure. However for indefinite metrics this is not true, i.e. in general the vanishing of the square norm $\|\nabla J\|^{2}$ does not always imply the Kähler condition, $\nabla J=0$. Thus an indefinite almost Hermitian structure is said to be isotropic Kähler if $\|\nabla J\|^{2}=0$ and indefinite Kähler if $\nabla J=0$. Although there are many known examples of indefinite Kähler structures (see, e.g. [2,5,11]) the

[^0]first examples of non-Kähler isotropic Kähler structures have been recently constructed by Garcia-Rio and Matsushita [7]. These examples are non-integrable and are related to certain Engel structures on \mathbb{R}^{4} and their compact quotients.

In this paper we give a class of integrable six-dimensional examples. These arise as certain indefinite Hermitian structures on hyperbolic twistor spaces over four-dimensional manifolds [3]. One of the key features of our study is the fact that the base manifolds are endowed with neutral metrics, i.e. semi-Riemannian metrics of signature (2, 2). This setting naturally arises in $N=2$ string theory where the additional structure of two local supersymmetries on a worldsheet leads to considering neutral Kähler metrics. We refer to [10] for a fascinating discussion.

In Section 2 we review the theory of hyperbolic twistor spaces over four-dimensional manifolds with neutral metrics and their two natural indefinite almost Hermitian structures. In Section 3 we compute the square norm of the covariant derivatives of their fundamental two-forms in terms of the curvature of the base manifold. Then in Section 4 we prove that only one of these indefinite almost Hermitian structures can be isotropic Kähler and obtain the precise geometric conditions on the base manifold ensuring this property. Finally in Section 5 we construct two-parameter families of neutral left-invariant metrics on some four-dimensional Lie groups whose hyperbolic twistor spaces are indefinite Hermitian and isotropic Kähler but not indefinite Kähler.

2. Hyperbolic twistor spaces over four-dimensional manifolds

Let M be an oriented four-dimensional manifold with a neutral metric g, i.e. a pseudoRiemannian metric of signature (2,2), and $\mathbf{e}_{1}, \ldots, \mathbf{e}_{4}$ a local orthonormal frame with $\mathbf{e}_{1} \wedge$ $\mathbf{e}_{2} \wedge \mathbf{e}_{3} \wedge \mathbf{e}_{4}$ giving the orientation. The metric g induces a metric on bundle of bivectors, $\wedge^{2} T M$, by

$$
g\left(\mathbf{e}_{i} \wedge \mathbf{e}_{j}, \mathbf{e}_{k} \wedge \mathbf{e}_{l}\right)=\frac{1}{2}\left|\begin{array}{ll}
\varepsilon_{i} \delta_{i k} & \varepsilon_{i} \delta_{i l} \\
\varepsilon_{j} \delta_{j k} & \varepsilon_{j} \delta_{j l}
\end{array}\right|, \quad \varepsilon_{1}=\varepsilon_{2}=1, \quad \varepsilon_{3}=\varepsilon_{4}=-1
$$

The Hodge star operator of the neutral metric acts as an involution on $\wedge^{2} T M$ and is given by

$$
*\left(\mathbf{e}_{1} \wedge \mathbf{e}_{2}\right)=\mathbf{e}_{3} \wedge \mathbf{e}_{4}, \quad *\left(\mathbf{e}_{1} \wedge \mathbf{e}_{3}\right)=\mathbf{e}_{2} \wedge \mathbf{e}_{4}, \quad *\left(\mathbf{e}_{1} \wedge \mathbf{e}_{4}\right)=-\mathbf{e}_{2} \wedge \mathbf{e}_{3}
$$

Let \wedge^{-}and \wedge^{+}denote the subbundles of $\wedge^{2} T M$ determined by the corresponding eigenvalues of the Hodge star operator. The metrics induced on \wedge^{-}and \wedge^{+}have signature (,,+--).

Setting

$$
\begin{array}{ll}
s_{1}=\mathbf{e}_{1} \wedge \mathbf{e}_{2}-\mathbf{e}_{3} \wedge \mathbf{e}_{4}, & \bar{s}_{1}=\mathbf{e}_{1} \wedge \mathbf{e}_{2}+\mathbf{e}_{3} \wedge \mathbf{e}_{4} \\
s_{2}=\mathbf{e}_{1} \wedge \mathbf{e}_{3}-\mathbf{e}_{2} \wedge \mathbf{e}_{4}, & \bar{s}_{2}=\mathbf{e}_{1} \wedge \mathbf{e}_{3}+\mathbf{e}_{2} \wedge \mathbf{e}_{4} \\
s_{3}=\mathbf{e}_{1} \wedge \mathbf{e}_{4}+\mathbf{e}_{2} \wedge \mathbf{e}_{3}, & \bar{s}_{3}=\mathbf{e}_{1} \wedge \mathbf{e}_{4}-\mathbf{e}_{2} \wedge \mathbf{e}_{3}
\end{array}
$$

$\left\{s_{1}, s_{2}, s_{3}\right\}$ and $\left\{\bar{s}_{1}, \bar{s}_{2}, \bar{s}_{3}\right\}$ are local oriented orthonormal frames for \wedge^{-}and \wedge^{+}, respectively.

An almost paraquaternionic structure on a C^{∞} manifold M is a rank 3-subbundle E of the endomorphisms bundle $\operatorname{End}(T M)$ which locally is spanned by a triple $\left\{J_{1}, J_{2}, J_{3}\right\}$, where J_{1} is an almost complex structure, J_{2} an almost product structure such that $J_{1} J_{2}+J_{2} J_{1}=0$ and $J_{3}=J_{1} J_{2} . J_{3}$ is a second almost product structure which also anti-commutes with J_{1} and J_{2}; in particular $\left\{J_{1}, J_{2}, J_{3}\right\}$ is an almost quaternionic structure of the second kind in the sense of Libermann [9]. An almost paraquaternionic manifold of dimension $4 n \geq 8$ and neutral metric g is said to be paraquaternionic Kähler if the bundle E is parallel with respect to the Levi-Civita connection D of g. In dimension 4 this is not a restriction and the four-dimensional analogue of a paraquaternionic Kähler manifold is a neutral, Einstein, self-dual manifold.

We can now identify $\wedge^{2} T M$ with the bundle of skew-symmetric endomorphisms of $T M$ by the correspondence that assigns to each $\sigma \in \wedge^{2} T M$ the endomorphism K_{σ} on $T_{p} M$, $p=\pi(\sigma)$, defined by

$$
g\left(K_{\sigma} X, Y\right)=2 g(\sigma, X \wedge Y) ; \quad X, Y \in T_{p} M
$$

Now the bundle $E=\wedge^{-}$defines an almost paraquaternionic structure on M, the local endomorphisms $\left\{J_{1}, J_{2}, J_{3}\right\}$ spanning E being $J_{1}=K_{S_{1}}, J_{2}=K_{s_{2}}, J_{3}=K_{S_{3}}$.

We can now define the twistor space \mathcal{Z} as given in [3]. We first observe that if

$$
j=y_{1} J_{1}+y_{2} J_{2}+y_{3} J_{3},
$$

then j is an almost complex structure on M if and only if

$$
-y_{1}^{2}+y_{2}^{2}+y_{3}^{2}=-1
$$

The hyperbolic twistor space $\pi: \mathcal{Z} \rightarrow M$ is then the hypersurface of E defined by this equation. In particular the fibres of \mathcal{Z} are these hyperboloids and the reader is encouraged to think of the $y_{1}>0$ branch as one of the standard models of the hyperbolic plane.

Define a pseudo-Riemannian metric on \mathcal{Z} by

$$
h_{t}=\pi^{*} g+t\langle,\rangle, \quad t \neq 0
$$

where \langle,$\rangle is the negative of the restriction of induced metric on E$ to the fibres. When $t=1$ the branches of the hyperboloids are hyperbolic planes with constant curvature -1 .

We also use the following notation. For the metric \langle,$\rangle on the fibres of E$ we set $\epsilon_{1}=-1$ and $\epsilon_{2}=\epsilon_{3}=+1$. Further, denoting also by π the projection of E onto M, if x_{i} are local coordinates on M, set $q_{i}=x_{i} \circ \pi$. We will identify the tangent space of E at a point $x \in E$ with the fibre $E_{\pi(x)}$ through that point. For a section s of E we denote its vertical lift to E as a vector field by s^{v} (so $s^{v}=s \circ \pi$) and frequently utilise the natural identifications of J_{a}^{v} with J_{a} itself and with $\partial / \partial y_{a}$ in terms of the fibre coordinates y_{1}, y_{2}, y_{3}.

The Levi-Civita connection D of g gives rise to the horizontal lift X^{h} of a vector field X to the bundle E in the usual way:

$$
X^{h}=\sum_{i} X^{i} \frac{\partial}{\partial q^{i}}-\sum_{a, b=1}^{3} \epsilon_{b} y^{a}\left(\left\langle D_{X} J_{a}, J_{b}\right\rangle \circ \pi\right) \frac{\partial}{\partial y_{b}} .
$$

We now define two almost complex structures \mathcal{J}_{1} and \mathcal{J}_{2} on the hyperbolic twistor space \mathcal{Z} as follows. Acting on horizontal vectors these are the same and given by $\mathcal{J}_{1} X_{\sigma}^{h}=\mathcal{J}_{2} X_{\sigma}^{h}=$ $(j X)_{\sigma}^{h}$ where as above $j=\sum y_{a} J_{a}$ is the point $\sigma \in \mathcal{Z}$ considered as an endomorphism of $T M$. For a vertical vector tangent to $\mathcal{Z}, V=V^{1}\left(\partial / \partial y_{1}\right)+V^{2}\left(\partial / \partial y_{2}\right)+V^{3}\left(\partial / \partial y_{3}\right)$, let $\mathcal{J}_{k} V=(-1)^{k-1} \sigma \times V, k=1,2, \sigma \in \mathcal{Z}$, where \times is the vector product determined by the paraquaternionic algebra. It is easy to check that h_{t} is Hermitian with respect to both \mathcal{J}_{1} and \mathcal{J}_{2}.

The curvature operator $\mathcal{R}: \wedge^{2} T M \rightarrow \wedge^{2} T M$ admits an $\mathrm{SO}(2,2)$-irreducible decomposition

$$
\mathcal{R}=\frac{1}{6} \tau I+\mathcal{B}+\mathcal{W}^{+}+\mathcal{W}^{-}
$$

similar to the four-dimensional Riemannian case. Here τ denotes the scalar curvature of the base manifold, \mathcal{B} represents the traceless Ricci tensor and $\mathcal{W}=\mathcal{W}^{+}+\mathcal{W}^{-}$corresponds to the Weyl conformal curvature tensor. The metric g is said to be self-dual if $\mathcal{W}^{-}=0$. Also it is often convenient to write the action of \mathcal{R} on $\wedge^{2} T M=\wedge^{+} \oplus \wedge^{-}$as

$$
\mathcal{R}=\left(\begin{array}{cc}
\frac{1}{6} \tau I+\mathcal{W}^{+} & \mathcal{B} \tag{2.1}\\
* \mathcal{B} & \frac{1}{6} \tau I+\mathcal{W}^{-}
\end{array}\right)
$$

where we have made the standard identifications; e.g. of \mathcal{B} with

$$
\left(\begin{array}{cc}
0 & \mathcal{B} \\
* \mathcal{B} & 0
\end{array}\right)
$$

where ${ }^{*} \mathcal{B}$ denotes the adjoint of the upper right hand block, \mathcal{B}.
The theory now develops as in the quaternionic Kähler case and we have the following result from [3] quite analogous to the classical twistor space theory.

Theorem 2.1. On the hyperbolic twistor space \mathcal{Z} of an oriented four-dimensional manifold M with a neutral metric g we have the following:
(i) The almost complex structure \mathcal{J}_{1} is integrable if and only if the metric g is self-dual. The almost Hermitian structure $\left(\mathcal{J}_{1}, h_{t}\right)$ is semi-Kähler if and only if g is self-dual. It is indefinite Kähler if and only if the metric g is Einstein, self-dual, and $\tau \tau=-12$.
(ii) The almost complex structure \mathcal{J}_{2} is never integrable. The almost Hermitian structure $\left(\mathcal{J}_{2}, h_{t}\right)$ is semi-Kähler if and only if g is self-dual. It is indefinite almost Kähler or nearly Kähler if and only if the metric g is Einstein, self-dual and $t \tau=12$ or $t \tau=-6$, respectively.

In the classical twistor space theory the almost complex structures \mathcal{J}_{1} and \mathcal{J}_{2} were introduced, respectively, by Atiyah et al. [1] and Eells and Salamon [4]. It is a result of Atiyah et al. that \mathcal{J}_{1} is integrable if and only if the base manifold is self-dual [1]. Unlike \mathcal{J}_{1}, the almost complex structure \mathcal{J}_{2} is never integrable as was observed by Eells and Salamon [4]. The Kähler condition for $\left(h_{t}, \mathcal{J}_{1}\right)$ in the classical case was studied by Friedrich and Kurke [6] who proved that \mathcal{J}_{1} is Kähler if and only if the base manifold is Einstein, self-dual with $t \tau=12, t>0$. Note that the only compact Einstein,
self-dual manifolds of positive scalar curvature are S^{4} and $\mathbb{C} P^{2}$ with their canonical metrics [6,8].

3. Norm of the covariant derivative of the fundamental two-form

We denote by $\|\cdot\|_{t}$ the norm with respect to h_{t} and by $\|\cdot\|$ the norm with respect to g. Consider the almost Hermitian manifolds $\left(\mathcal{Z}, \mathcal{J}_{k}, h_{t}\right), k=1,2$. The fundamental two-forms are defined by $\Omega_{k, t}(X, Y)=h_{t}\left(X, \mathcal{J}_{k} Y\right) k=1,2$, but for simplicity we denote them by Ω. Similarly we denote the Levi-Civita connection of h_{t} simply by ∇.

We shall compute the norm of $\nabla \Omega$ in terms of the components of \mathcal{R} in the decomposition (2.1).

Lemma 3.1. The norm of $\nabla \Omega$ at $\sigma \in \mathcal{Z}$ is given by

$$
\begin{aligned}
& \|\nabla \Omega\|_{t}^{2}=-\left[\frac{2}{t}\left(2+\frac{t \tau}{6}\right)^{2}+\frac{t \tau^{2}}{18}\left(1+(-1)^{k}\right)\right]+\left[4+\frac{t \tau}{3}\left(2+(-1)^{k}\right)\right] g\left(\sigma, \mathcal{W}^{-}(\sigma)\right) \\
& t\left(3\left\|\mathcal{W}^{-}(\sigma)\right\|^{2}-g\left(\sigma, \mathcal{W}^{-}(\sigma)\right)^{2}-2\left\|\mathcal{W}^{-}\right\|^{2}\right)+t\left[\|\mathcal{B}(\sigma)\|^{2}-\frac{\|\mathcal{B}\|^{2}}{2}\right] \\
& \quad+(-1)^{k} t \operatorname{tr}\left(\mathcal{W}^{-} \circ S_{\sigma}\right)^{2},
\end{aligned}
$$

where S_{σ} is the endomorphism of $\wedge_{\bar{p}}^{-}, p=\pi(\sigma)$, defined by $S_{\sigma} A=\sigma \times A, A \in \wedge_{p}^{-}$, and \times denotes the vector product determined by the paraquaternionic algebra.

Proof. Let $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}\right)$ a local orthonormal frame on a neighbourhood of $p \in M$ such that $\left\|\mathbf{e}_{1}\right\|=\left\|\mathbf{e}_{2}\right\|=-\left\|\mathbf{e}_{3}\right\|=-\left\|\mathbf{e}_{4}\right\|$. As before we write $\varepsilon_{1}=\varepsilon_{2}=-\varepsilon_{3}=-\varepsilon_{4}=1$ and we write ε_{t} for the sign of the non-zero number t. Let V be a vertical tangent vector such that $h_{t}(V, V)=\varepsilon_{t}$. Then $\left(\mathbf{e}_{1}^{h}, \mathbf{e}_{2}^{h}, \mathbf{e}_{3}^{h}, \mathbf{e}_{4}^{h}, V, \mathcal{J}_{k} V\right)$ is an orthonormal frame of $T_{\sigma} \mathcal{Z}$ and we have

$$
\begin{align*}
\|\nabla \Omega\|_{t}^{2}= & \sum_{1 \leq a, b \leq 4} \varepsilon_{a} \varepsilon_{b} \varepsilon_{t}\left[\left(\nabla_{V} \Omega\right)\left(\mathbf{e}_{a}^{h}, \mathbf{e}_{b}^{h}\right)^{2}+\left(\nabla_{\mathcal{J}_{k} V} \Omega\right)\left(\mathbf{e}_{a}^{h}, \mathbf{e}_{b}^{h}\right)^{2}\right] \\
& +2 \sum_{1 \leq a, b \leq 4} \varepsilon_{a} \varepsilon_{b} \varepsilon_{t}\left[\left(\nabla_{\mathbf{e}_{a}^{h}} \Omega\right)\left(\mathbf{e}_{b}^{h}, V\right)^{2}+\left(\nabla_{\mathbf{e}_{a}^{h}} \Omega\right)\left(\mathbf{e}_{b}^{h}, \mathcal{J}_{k} V\right)^{2}\right] \tag{3.1}
\end{align*}
$$

For simplicity, we denote the complex structure K_{σ} on $T_{p} M$ defined by σ by K. Then it is easy to check that

$$
\begin{equation*}
g(A, X \wedge K Y)=\frac{1}{2} g(\sigma, A) g(X, Y)-g(\sigma \times A, X \wedge Y) \tag{3.2}
\end{equation*}
$$

for any $A \in \wedge_{p}^{-}$and $X, Y \in T_{p} M$. In particular

$$
\begin{equation*}
g(A, X \wedge K Y+K X \wedge Y)=-2 g(\sigma \times A, X \wedge Y) \tag{3.3}
\end{equation*}
$$

Note that $X \wedge K Y+K X \wedge Y \in \wedge_{\bar{p}}^{-}$.

Now for $V \in \wedge_{p}^{-}$we have $\mathcal{W}^{+}(V)=0, \mathcal{W}^{-}(V) \in \wedge_{p}^{-}$and $\mathcal{B}(V) \in \wedge_{p}^{+}$. Hence from Lemma 2 in [3] and (3.3) it follows that

$$
\begin{align*}
& \sum_{1 \leq a, b \leq 4} \varepsilon_{a} \varepsilon_{b}\left(\nabla_{V} \Omega\right)\left(\mathbf{e}_{a}^{h}, \mathbf{e}_{b}^{h}\right)^{2} \\
& =\sum_{1 \leq a, b \leq 4} \varepsilon_{a} \varepsilon_{b} g\left(\left(2+\frac{t \tau}{6}\right) V-t \sigma \times \mathcal{W}^{-}(\sigma \times V), \mathbf{e}_{a} \wedge \mathbf{e}_{b}\right)^{2} \\
& =\left(2+\frac{t \tau}{6}\right)^{2}\|V\|^{2}+2 t\left(2+\frac{t \tau}{6}\right) g\left(\sigma \times V, \mathcal{W}^{-}(\sigma \times V)\right)+t^{2}\left\|\sigma \times \mathcal{W}^{-}(\sigma \times V)\right\|^{2} \\
& =\left(2+\frac{t \tau}{6}\right)^{2}\|V\|^{2}+2 t\left(2+\frac{t \tau}{6}\right) g\left(\sigma \times V, \mathcal{W}^{-}(\sigma \times V)\right) \\
& \quad+t^{2}\left\|\mathcal{W}^{-}(\sigma \times V)\right\|^{2}-t^{2} g\left(\sigma, \mathcal{W}^{-}(\sigma \times V)\right)^{2} \tag{3.4}
\end{align*}
$$

Replacing V by $\mathcal{J}_{k} V$ in (3.4) and adding to (3.4) we have

$$
\begin{align*}
\sum_{1}:= & \sum_{1 \leq a, b \leq 4} \varepsilon_{a} \varepsilon_{b}\left(\left(\nabla_{V} \Omega\right)\left(\mathbf{e}_{a}^{h}, \mathbf{e}_{b}^{h}\right)^{2}+\left(\nabla_{\mathcal{J}_{k} V} \Omega\right)\left(\mathbf{e}_{a}^{h}, \mathbf{e}_{b}^{h}\right)^{2}\right) \\
= & 2\left(2+\frac{t \tau}{6}\right)^{2}\|V\|^{2}+2 t\left(2+\frac{t \tau}{6}\right)\left(g\left(V, \mathcal{W}^{-}(V)\right)+g\left(\sigma \times V, \mathcal{W}^{-}(\sigma \times V)\right)\right) \\
& +t^{2}\left(\left\|\mathcal{W}^{-}(V)\right\|^{2}+\left\|\mathcal{W}^{-}(\sigma \times V)\right\|^{2}\right)-t^{2}\left(g\left(\sigma, \mathcal{W}^{-}(V)\right)^{2}+g\left(\sigma, \mathcal{W}^{-}(\sigma \times V)\right)^{2}\right) \tag{3.5}
\end{align*}
$$

Since \mathcal{W}^{-}has vanishing trace,

$$
g\left(\sigma, \mathcal{W}^{-}(\sigma)\right)-|t| g\left(V, \mathcal{W}^{-}(V)\right)-|t| g\left(\sigma \times V, \mathcal{W}^{-}(\sigma \times V)\right)=0
$$

and hence

$$
\begin{equation*}
g\left(V, \mathcal{W}^{-}(V)\right)+g\left(\sigma \times V, \mathcal{W}^{-}(\sigma \times V)\right)=\frac{\varepsilon_{t}}{t} g\left(\sigma, \mathcal{W}^{-}(\sigma)\right) \tag{3.6}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\left\|\mathcal{W}^{-}(V)\right\|^{2}+\left\|\mathcal{W}^{-}(\sigma \times V)\right\|^{2}=\frac{\varepsilon_{t}}{t}\left(\left\|\mathcal{W}^{-}(\sigma)\right\|^{2}-\left\|\mathcal{W}^{-}\right\|^{2}\right) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(\sigma, \mathcal{W}^{-}(V)\right)^{2}+g\left(\sigma, \mathcal{W}^{-}(\sigma \times V)\right)^{2}=\frac{\varepsilon_{t}}{t}\left(g\left(\sigma, \mathcal{W}^{-}(\sigma)\right)^{2}-\left\|\mathcal{W}^{-}(\sigma)\right\|^{2}\right) \tag{3.8}
\end{equation*}
$$

Eqs. (3.5)-(3.8) now give

$$
\begin{align*}
\sum_{1}= & -\frac{2 \varepsilon_{t}}{t}\left(2+\frac{t \tau}{6}\right)^{2}+2 \varepsilon_{t}\left(2+\frac{t \tau}{6}\right) g\left(\sigma, \mathcal{W}^{-}(\sigma)\right) \\
& +t \varepsilon_{t}\left(2\left\|\mathcal{W}^{-}(\sigma)\right\|^{2}-\left\|\mathcal{W}^{-}\right\|^{2}-g\left(\sigma, \mathcal{W}^{-}(\sigma)\right)^{2}\right) \tag{3.9}
\end{align*}
$$

We now compute the second sum in (3.1). By Lemma 2 in [3] we get

$$
\begin{align*}
\sum_{1 \leq a, b \leq 4} & \varepsilon_{a} \varepsilon_{b}\left(\nabla_{\mathbf{e}_{a}^{h}} \Omega\right)\left(\mathbf{e}_{b}^{h}, V\right)^{2} \\
= & \frac{t^{2}}{4}\left(\|\mathcal{R}(V)\|^{2}+\|\mathcal{R}(\sigma \times V)\|^{2}\right) \\
& +\frac{t^{2}}{2}(-1)^{k} \sum_{1 \leq a, b \leq 4} \varepsilon_{a} \varepsilon_{b} g\left(\mathcal{R}(V), \mathbf{e}_{a} \wedge \mathbf{e}_{b}\right) g\left(\mathcal{R}(\sigma \times V), \mathbf{e}_{a} \wedge K \mathbf{e}_{b}\right) . \tag{3.10}
\end{align*}
$$

Now for $V \in \wedge_{p}^{-}$,

$$
\begin{equation*}
\|\mathcal{R}(V)\|^{2}=\|\mathcal{B}(V)\|^{2}+\frac{1}{36} \tau^{2}\|V\|^{2}+\frac{1}{3} \tau g\left(V, \mathcal{W}^{-}(V)\right)+\left\|\mathcal{W}^{-}(V)\right\|^{2} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{align*}
\|\mathcal{R}(\sigma \times V)\|^{2}= & \|\mathcal{B}(\sigma \times V)\|^{2}+\frac{1}{36} \tau^{2}\|V\|^{2}+\frac{1}{3} \tau g\left(\sigma \times V, \mathcal{W}^{-}(\sigma \times V)\right) \\
& +\left\|\mathcal{W}^{-}(\sigma \times V)\right\|^{2} \tag{3.12}
\end{align*}
$$

Again for $V \in \wedge_{p}^{-}$, set $P(V)=(\tau / 6) V+\mathcal{W}^{-}(V)$. Then $\mathcal{R}(V)=P(V)+\mathcal{B}(V)$ and we have

$$
\begin{aligned}
& \sum_{1 \leq a, b \leq 4} \varepsilon_{a} \varepsilon_{b} g\left(\mathcal{R}(V), \mathbf{e}_{a} \wedge \mathbf{e}_{b}\right) g\left(\mathcal{R}(\sigma \times V), \mathbf{e}_{a} \wedge K \mathbf{e}_{b}\right) \\
& =\sum_{1 \leq a, b \leq 4} \varepsilon_{a} \varepsilon_{b} g\left(P(V), \mathbf{e}_{a} \wedge \mathbf{e}_{b}\right) g\left(P(\sigma \times V), \mathbf{e}_{a} \wedge K \mathbf{e}_{b}\right) \\
& \quad+\sum_{1 \leq a, b \leq 4} \varepsilon_{a} \varepsilon_{b} g\left(P(V), \mathbf{e}_{a} \wedge \mathbf{e}_{b}\right) g\left(\mathcal{B}(\sigma \times V), \mathbf{e}_{a} \wedge K \mathbf{e}_{b}\right) \\
& \quad+\sum_{1 \leq a, b \leq 4} \varepsilon_{a} \varepsilon_{b} g\left(\mathcal{B}(V), \mathbf{e}_{a} \wedge \mathbf{e}_{b}\right) g\left(P(\sigma \times V), \mathbf{e}_{a} \wedge K \mathbf{e}_{b}\right) \\
& \quad+\sum_{1 \leq a, b \leq 4} \varepsilon_{a} \varepsilon_{b} g\left(\mathcal{B}(V), \mathbf{e}_{a} \wedge \mathbf{e}_{b}\right) g\left(\mathcal{B}(\sigma \times V), \mathbf{e}_{a} \wedge K \mathbf{e}_{b}\right)
\end{aligned}
$$

Note that the latter three sums vanish because, for example,

$$
\begin{aligned}
\varepsilon_{a} \varepsilon_{b} g & \left(P(V), \mathbf{e}_{a} \wedge \mathbf{e}_{b}\right) g\left(\mathcal{B}(\sigma \times V), \mathbf{e}_{a} \wedge K \mathbf{e}_{b}\right) \\
& +\varepsilon_{b} \varepsilon_{a} g\left(P(V), \mathbf{e}_{b} \wedge \mathbf{e}_{a}\right) g\left(\mathcal{B}(\sigma \times V), \mathbf{e}_{b} \wedge K \mathbf{e}_{a}\right) \\
= & \varepsilon_{a} \varepsilon_{b} g\left(P(V), \mathbf{e}_{a} \wedge \mathbf{e}_{b}\right) g\left(\mathcal{B}(\sigma \times V), \mathbf{e}_{a} \wedge K \mathbf{e}_{b}+K \mathbf{e}_{a} \wedge \mathbf{e}_{b}\right)=0
\end{aligned}
$$

since $\mathbf{e}_{a} \wedge K \mathbf{e}_{b}+K \mathbf{e}_{a} \wedge \mathbf{e}_{b} \in \wedge_{p}^{-}$.

Now using (3.2) we get

$$
\begin{aligned}
& \sum_{1 \leq a, b \leq 4} \varepsilon_{a} \varepsilon_{b} g\left(P(V), \mathbf{e}_{a} \wedge \mathbf{e}_{b}\right) g\left(P(\sigma \times V), \mathbf{e}_{a} \wedge K \mathbf{e}_{b}\right) \\
& =\sum_{1 \leq a, b \leq 4} \varepsilon_{a} \varepsilon_{b} g\left(P(V), \mathbf{e}_{a} \wedge \mathbf{e}_{b}\right)\left[\frac{1}{2} g(\sigma, P(\sigma \times V)) g\left(\mathbf{e}_{a}, \mathbf{e}_{b}\right)\right. \\
& \left.\quad-g\left(\sigma \times P(\sigma \times V), \mathbf{e}_{a} \wedge \mathbf{e}_{b}\right)\right]=-g(P(V), \sigma \times P(\sigma \times V)) \\
& = \\
& \quad g(\sigma \times P(V), P(\sigma \times V))=\frac{\tau^{2}}{36}\|V\|^{2}+\frac{\tau}{6}\left[g\left(\sigma \times V, \mathcal{W}^{-}(\sigma \times V)\right)\right. \\
& \left.\quad+g\left(V, \mathcal{W}^{-}(V)\right)\right]+g\left(\sigma \times \mathcal{W}^{-}(V), \mathcal{W}^{-}(\sigma \times V)\right)
\end{aligned}
$$

Continuing using Eq. (3.6), this becomes

$$
-\frac{\tau^{2} \varepsilon_{t}}{36 t}+\frac{\tau \varepsilon_{t}}{6 t} g\left(\sigma, \mathcal{W}^{-}(\sigma)\right)-g\left(\left(\mathcal{W}^{-} \circ S_{\sigma}\right)^{2}(V), V\right)
$$

Therefore

$$
\begin{align*}
& \sum_{1 \leq a, b \leq 4} \varepsilon_{a} \varepsilon_{b} g\left(\mathcal{R}(V), \mathbf{e}_{a} \wedge \mathbf{e}_{b}\right) g\left(\mathcal{R}(\sigma \times V), \mathbf{e}_{a} \wedge K \mathbf{e}_{b}\right) \\
& \quad=-\frac{\tau^{2} \varepsilon_{t}}{36 t}+\frac{\tau \varepsilon_{t}}{6 t} g\left(\sigma, \mathcal{W}^{-}(\sigma)\right)-\frac{\varepsilon_{t}}{t} g\left(\left(\mathcal{W}^{-} \circ S_{\sigma}\right)^{2}(V), V\right) \tag{3.13}
\end{align*}
$$

Now from Eqs. (3.10)-(3.13) we obtain

$$
\begin{align*}
\sum_{1 \leq a, b \leq 4} & \varepsilon_{a} \varepsilon_{b}\left(\nabla_{\mathbf{e}_{a}^{h}} \Omega\right)\left(\mathbf{e}_{b}^{h}, V\right)^{2} \\
= & -\frac{t \tau^{2} \varepsilon_{t}}{72}\left(1+(-1)^{k}\right)+\frac{t \tau \varepsilon_{t}}{12}\left(1+(-1)^{k}\right) g\left(\sigma, \mathcal{W}^{-}(\sigma)\right) \\
& +\frac{t \varepsilon_{t}}{4}\left(\left\|\mathcal{W}^{-}(\sigma)\right\|^{2}-\left\|\mathcal{W}^{-}\right\|^{2}\right)+\frac{t \varepsilon_{t}}{4}\left(\|\mathcal{B}(\sigma)\|^{2}-\frac{\|\mathcal{B}\|^{2}}{2}\right) \\
& +(-1)^{k+1} \frac{t \varepsilon_{t}}{2} g\left(\left(\mathcal{W}^{-} \circ S_{\sigma}\right)^{2}(V), V\right) \tag{3.14}
\end{align*}
$$

Applying (3.14) to $\mathcal{J}_{k} V$ and adding (3.14) we have

$$
\begin{align*}
\sum_{2}:= & 2 \sum_{1 \leq a, b \leq 4} \varepsilon_{a} \varepsilon_{b}\left(\left(\nabla_{\mathbf{e}_{a}^{h}} \Omega\right)\left(\mathbf{e}_{b}^{h}, V\right)^{2}+\left(\nabla_{\mathbf{e}_{a}^{h}} \Omega\right)\left(\mathbf{e}_{b}^{h}, \mathcal{J}_{k} V\right)^{2}\right) \\
= & -\frac{t \tau^{2} \varepsilon_{t}}{18}\left(1+(-1)^{k}\right)+\frac{t \tau \varepsilon_{t}}{3}\left(1+(-1)^{k}\right) g\left(\sigma, \mathcal{W}^{-}(\sigma)\right) \\
& +t \varepsilon_{t}\left(\left\|\mathcal{W}^{-}(\sigma)\right\|^{2}-\left\|\mathcal{W}^{-}\right\|^{2}\right)+t \varepsilon_{t}\left(\|\mathcal{B}(\sigma)\|^{2}-\frac{\|\mathcal{B}\|^{2}}{2}\right) \\
& +(-1)^{k} t \varepsilon_{t} \operatorname{tr}\left(\mathcal{W}^{-} \circ S_{\sigma}\right)^{2} \tag{3.15}
\end{align*}
$$

since $\left(\mathcal{W}^{-} \circ S_{\sigma}\right)(\sigma)=0$. Now since $\|\nabla \Omega\|_{t}^{2}=\varepsilon_{t}\left(\sum_{1}+\sum_{2}\right)$, the lemma follows from (3.9) and (3.15).

4. Isotropic Kähler hyperbolic twistor spaces

We now prove the following theorem.
Theorem 4.1. The hyperbolic twistor space $\left(\mathcal{Z}, h_{t}, \mathcal{J}_{k}\right), k=1,2$, is isotropic Kähler if and only if $k=1, \mathcal{W}^{-}=0, \mathcal{B}_{\mid \Lambda^{-}}^{2}=0$ and $\tau t=-12$.

Proof. Setting

$$
\begin{aligned}
& f(t)=\frac{1}{t}\left[4+\frac{t \tau}{3}\left(2+(-1)^{k}\right)\right] \\
& h(t)=-2\left\|\mathcal{W}^{-}\right\|^{2}-\frac{\|\mathcal{B}\|^{2}}{2}-\left[\frac{2}{t^{2}}\left(2+\frac{t \tau}{6}\right)^{2}+\frac{\tau^{2}}{18}\left(1+(-1)^{k}\right)\right]
\end{aligned}
$$

it follows that $\|\nabla \Omega\|_{t}^{2}=0$ if and only if

$$
\begin{align*}
g\left(\sigma, \mathcal{W}^{-}(\sigma)\right)^{2}= & f(t) g\left(\sigma, \mathcal{W}^{-}(\sigma)\right)+3\left\|\mathcal{W}^{-}(\sigma)\right\|^{2}+\|\mathcal{B}(\sigma)\|^{2} \\
& +(-1)^{k} \operatorname{tr}\left(\mathcal{W}^{-} \circ S_{\sigma}\right)^{2}+h(t) \tag{4.1}
\end{align*}
$$

for all $\sigma \in \mathcal{Z}$.
Let

$$
D=\left\{\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3} \mid y_{1}^{2}-y_{2}^{2}-y_{3}^{2}>0\right\}
$$

and $\|y\|^{2}=y_{1}^{2}-y_{2}^{2}-y_{3}^{2}$. Then $\left(y_{1} /\|y\|, y_{2} /\|y\|, y_{3} /\|y\|\right)$ belongs to the hyperboloid $y_{1}^{2}-y_{2}^{2}-y_{3}^{2}=1$ and

$$
\sigma=\frac{y_{1}}{\|y\|} s_{1}+\frac{y_{2}}{\|y\|} s_{2}+\frac{y_{3}}{\|y\|} s_{3} \in \mathcal{Z}_{p}
$$

For simplicity denote by $\alpha_{i j}$ the inner product $g\left(s_{i}, \mathcal{W}^{-}\left(s_{j}\right)\right)$. Then Eq. (4.1) can be written in the form

$$
\left(\sum_{i, j=1}^{3} \alpha_{i j} y_{i} y_{j}\right)^{2}=\|y\|^{2}\left(\sum_{i, j=1}^{3} \gamma_{i j} y_{i} y_{j}\right)
$$

for some coefficients $\gamma_{i j}$. Setting $y_{3}=0$ and comparing coefficients gives $\alpha_{11}=-\alpha_{22}$ and $\alpha_{12}=0$. Similarly $\alpha_{11}=-\alpha_{33}$ and $\alpha_{13}=0$. On the other hand $0=\operatorname{tr} \mathcal{W}^{-}=$ $\alpha_{11}-\alpha_{22}-\alpha_{33}$ which then gives $\alpha_{11}=\alpha_{22}=\alpha_{33}=0$. Hence our equation takes the form

$$
4 \alpha_{23}^{2} y_{2}^{2} y_{3}^{2}=\left(y_{1}^{2}-y_{2}^{2}-y_{3}^{2}\right)\left(\sum_{i, j=1}^{3} \gamma_{i j} y_{i} y_{j}\right)
$$

which clearly implies that $\alpha_{23}=0$. Thus $g\left(s_{i}, \mathcal{W}^{-}\left(s_{j}\right)\right)=0$ for all $1 \leq i, j \leq 3$ giving that $\mathcal{W}^{-}=0$.

Eq. (4.1) now takes the form

$$
\begin{equation*}
\|\mathcal{B}(\sigma)\|^{2}=\frac{1}{2}\|\mathcal{B}\|^{2}+g(t) \tag{4.2}
\end{equation*}
$$

where

$$
g(t)=\frac{2}{t^{2}}\left(2+\frac{t \tau}{6}\right)^{2}+\frac{\tau^{2}}{18}\left(1+(-1)^{k}\right)
$$

Note that $g(t) \geq 0$ with equality if and only if $k=1$ and $t \tau=-12$.
Applying the same arguments as above we see that Eq. (4.2) is equivalent to $g\left(\mathcal{B}\left(s_{i}\right), \mathcal{B}\left(s_{j}\right)\right)=$ 0 for $1 \leq i \neq j \leq 3$ and

$$
\left\|\mathcal{B}\left(s_{1}\right)\right\|^{2}=-\left\|\mathcal{B}\left(s_{2}\right)\right\|^{2}=-\left\|\mathcal{B}\left(s_{3}\right)\right\|^{2}=\frac{1}{2}\|\mathcal{B}\|^{2}+g(t) .
$$

Since

$$
\left\|\mathcal{B}\left(s_{1}\right)\right\|^{2}-\left\|\mathcal{B}\left(s_{2}\right)\right\|^{2}-\left\|\mathcal{B}\left(s_{3}\right)\right\|^{2}=\frac{1}{2}\|\mathcal{B}\|^{2}
$$

we get

$$
\left\|\mathcal{B}\left(s_{1}\right)\right\|^{2}=-\left\|\mathcal{B}\left(s_{2}\right)\right\|^{2}=-\left\|\mathcal{B}\left(s_{3}\right)\right\|^{2}=-\frac{1}{2} g(t)
$$

Suppose now that $g(t)>0$ and note that if $\|x\|^{2} \geq 0$ and $\|y\|^{2} \geq 0$, we have $\langle x, y\rangle^{2} \geq$ $\|x\|^{2}\|y\|^{2}$. Then

$$
0=\left\langle\mathcal{B}\left(s_{2}\right), \mathcal{B}\left(s_{3}\right)\right\rangle^{2} \geq\left\|\mathcal{B}\left(s_{2}\right)\right\|^{2}\left\|\mathcal{B}\left(s_{3}\right)\right\|^{2}=\left(\frac{1}{2} g(t)\right)^{2}
$$

a contradiction. Therefore $g(t)=0$, i.e. $k=1, \tau t=-12$ and $g\left(\mathcal{B}\left(s_{i}\right), \mathcal{B}\left(s_{j}\right)\right)=0$ for all i, j. Finally since $\mathcal{B}: \wedge^{2} T M \rightarrow \wedge^{2} T M$ is a symmetric operator it follow that $\mathcal{B}_{\mid \Lambda^{-}}^{2}=0$.

5. Examples of neutral self-dual metrics with $\mathcal{B}^{2}=0$

To illustrate the phenomena of the theorem of the preceding section, we provide examples of neutral self-dual metrics with $\mathcal{B}^{2}=0$ for which $\mathcal{B} \neq 0$. We do not know of examples with $\mathcal{B}_{\mid \Lambda^{-}}^{2}=0$ but $\mathcal{B}^{2} \neq 0$. We give two classes of examples; in the first class we have $\mathcal{W}=0$ and in the second class we have $\mathcal{W}^{-}=0$ but $\mathcal{W}^{+} \neq 0$.

Let G be a Lie group with Lie algebra \mathfrak{g} defined by

$$
\begin{aligned}
& {\left[E_{1}, E_{2}\right]=\alpha E_{2}+\beta E_{3}, \quad\left[E_{1}, E_{3}\right]=\gamma E_{2}+\delta E_{3}, \quad\left[E_{1}, E_{4}\right]=p E_{4},} \\
& {\left[E_{2}, E_{3}\right]=q E_{4}, \quad\left[E_{2}, E_{4}\right]=0, \quad\left[E_{3}, E_{4}\right]=0}
\end{aligned}
$$

together with the condition $(\alpha+\delta-p) q=0$ which gives the Jacobi identity. Define a neutral left-invariant metric g on G in terms of the dual basis $\left\{E^{i}\right\}$ by

$$
g=E^{1} \otimes E^{1}+E^{2} \otimes E^{2}-E^{3} \otimes E^{3}-E^{3} \otimes E^{3}
$$

It is now straightforward to compute the Levi-Civita connection and the curvature tensor of g. This in turn enables one to compute the curvature operator $\mathcal{R}: \wedge^{2} T G \rightarrow \wedge^{2} T G$ with respect to the bases $\left\{\bar{s}_{1}, \bar{s}_{2}, \bar{s}_{3}\right\}$ and $\left\{s_{1}, s_{2}, s_{3}\right\}$ of \wedge^{+}and \wedge^{-}, respectively. For the study of \mathcal{B} we need:

$$
\begin{aligned}
& g\left(\mathcal{R}\left(s_{1}\right), \bar{s}_{1}\right)=\frac{1}{4}\left(\beta^{2}-\gamma^{2}\right)+\frac{1}{2}(\beta(\beta-\gamma))+p \delta-\alpha^{2}-\frac{1}{4} q^{2}, \\
& g\left(\mathcal{R}\left(s_{1}\right), \bar{s}_{2}\right)=\beta \delta-\alpha \gamma+\frac{1}{2} p(\beta-\gamma), \quad g\left(\mathcal{R}\left(s_{1}\right), \bar{s}_{3}\right)=0, \\
& g\left(\mathcal{R}\left(s_{2}\right), \bar{s}_{1}\right)=\beta \delta-\alpha \gamma+\frac{1}{2} p(\beta-\gamma), \\
& g\left(\mathcal{R}\left(s_{2}\right), \bar{s}_{2}\right)=\frac{1}{4}\left(\beta^{2}-\gamma^{2}\right)+\frac{1}{2}(\gamma(\beta-\gamma))+\delta^{2}-p \alpha+\frac{1}{4} q^{2}, \\
& g\left(\mathcal{R}\left(s_{2}\right), \bar{s}_{3}\right)=0, \quad g\left(\mathcal{R}\left(s_{3}\right), \bar{s}_{1}\right)=0, \\
& g\left(\mathcal{R}\left(s_{3}\right), \bar{s}_{2}\right)=0, \quad g\left(\mathcal{R}\left(s_{3}\right), \bar{s}_{3}\right)=p^{2}-\frac{3}{4} q^{2}-\frac{1}{4}(\beta-\gamma)^{2}-\alpha \delta .
\end{aligned}
$$

For the study of \mathcal{W}^{-}we need:

$$
\begin{aligned}
& g\left(\mathcal{R}\left(\bar{s}_{1}\right), \bar{s}_{1}\right)=\frac{1}{4}\left(\beta^{2}-\gamma^{2}\right)+\frac{1}{2} \beta(\beta-\gamma)-\alpha q+\frac{1}{4} q^{2}-\alpha^{2}-p \delta, \\
& g\left(\mathcal{R}\left(\bar{s}_{1}\right), \bar{s}_{2}\right)=\beta \delta-\alpha \gamma+\frac{1}{2}(\beta-\gamma) q-\frac{1}{2} p(\beta-\gamma), \quad g\left(\mathcal{R}\left(\bar{s}_{1}\right), \bar{s}_{3}\right)=0, \\
& g\left(\mathcal{R}\left(\bar{s}_{2}\right), \bar{s}_{2}\right)=\frac{1}{4}\left(\beta^{2}-\gamma^{2}\right)+\frac{1}{2} \gamma(\beta-\gamma)+\delta^{2}+p \alpha+\delta q-\frac{1}{4} q^{2}, \\
& g\left(\mathcal{R}\left(\bar{s}_{2}\right), \bar{s}_{3}\right)=0, \quad g\left(\mathcal{R}\left(\bar{s}_{3}\right), \bar{s}_{3}\right)=p^{2}-p q+\frac{3}{4} q^{2}+\frac{1}{4}(\beta-\gamma)^{2}+\alpha \delta .
\end{aligned}
$$

For the study of \mathcal{W}^{+}we need:

$$
\begin{aligned}
& g\left(\mathcal{R}\left(s_{1}\right), s_{1}\right)=\frac{1}{4}\left(\beta^{2}-\gamma^{2}\right)+\frac{1}{2} \beta(\beta-\gamma)+\alpha q+\frac{1}{4} q^{2}-\alpha^{2}-p \delta, \\
& g\left(\mathcal{R}\left(s_{1}\right), s_{2}\right)=\beta \delta-\alpha \gamma-\frac{1}{2}(\beta-\gamma) q-\frac{1}{2} p(\beta-\gamma), \quad g\left(\mathcal{R}\left(s_{1}\right), s_{3}\right)=0, \\
& g\left(\mathcal{R}\left(s_{2}\right), s_{2}\right)=\frac{1}{4}\left(\beta^{2}-\gamma^{2}\right)+\frac{1}{2} \gamma(\beta-\gamma)+\delta^{2}+p \alpha-\delta q-\frac{1}{4} q^{2}, \\
& g\left(\mathcal{R}\left(s_{2}\right), s_{3}\right)=0, \quad g\left(\mathcal{R}\left(s_{3}\right), s_{3}\right)=p^{2}+p q+\frac{3}{4} q^{2} * *+\frac{1}{4}(\beta-\gamma)^{2}+\alpha \delta .
\end{aligned}
$$

We again recall the decomposition of the curvature operator

$$
\mathcal{R}=\frac{1}{6} \tau I+\mathcal{B}+\mathcal{W}^{+}+\mathcal{W}^{-}
$$

written as

$$
\mathcal{R}=\left(\begin{array}{cc}
\frac{1}{6} \tau I+\mathcal{W}^{+} & \mathcal{B} \\
* \mathcal{B} & \frac{1}{6} \tau I+\mathcal{W}^{-}
\end{array}\right)
$$

where we have made the standard identifications, especially of \mathcal{B} with

$$
\left(\begin{array}{cc}
0 & \mathcal{B} \\
* \mathcal{B} & 0
\end{array}\right) .
$$

Setting $b_{j i}=g\left(\mathcal{R}\left(s_{i}\right), \bar{s}_{j}\right)$ and recalling that the induced metrics on \wedge^{-}and \wedge^{+}have signature (,,+--), the matrices for \mathcal{B} and its adjoint ${ }^{*} \mathcal{B}$ are

$$
\left(\begin{array}{ccc}
b_{11} & b_{12} & 0 \\
-b_{21} & -b_{22} & 0 \\
0 & 0 & -b_{33}
\end{array}\right), \quad\left(\begin{array}{ccc}
b_{11} & b_{21} & 0 \\
-b_{12} & -b_{22} & 0 \\
0 & 0 & -b_{33}
\end{array}\right)
$$

Thus the condition for $\mathcal{B}_{\mid \Lambda^{-}}^{2}$ to vanish becomes

$$
\left(\begin{array}{ccc}
b_{11}^{2}-b_{21}^{2} & b_{11} b_{12}-b_{21} b_{22} & 0 \\
-b_{11} b_{12}+b_{21} b_{22} & b_{22}^{2}-b_{12}^{2} & 0 \\
0 & 0 & b_{33}^{2}
\end{array}\right)=0
$$

From here we see that $\mathcal{B}_{\mid \Lambda^{-}}^{2}$ will vanish if and only if

$$
g\left(\mathcal{R}\left(s_{1}\right), \bar{s}_{1}\right)=\epsilon g\left(\mathcal{R}\left(s_{1}\right), \bar{s}_{2}\right), \quad g\left(\mathcal{R}\left(s_{2}\right), \bar{s}_{2}\right)=\epsilon g\left(\mathcal{R}\left(s_{2}\right), \bar{s}_{1}\right), \quad g\left(\mathcal{R}\left(s_{3}\right), \bar{s}_{3}\right)=0
$$

where $\epsilon= \pm 1$. Similarly we see that self-duality becomes

$$
g\left(\mathcal{R}\left(s_{1}\right), s_{2}\right)=0, \quad g\left(\mathcal{R}\left(s_{1}\right), s_{1}\right)=-g\left(\mathcal{R}\left(s_{2}\right), s_{2}\right)=-g\left(\mathcal{R}\left(s_{3}\right), s_{3}\right)
$$

Since the Jacobi identity leads to the condition $(\alpha+\delta-p) q=0$, we first consider the case $q=0$. We then have the following equations

$$
\begin{align*}
& \frac{1}{4}\left(\beta^{2}-\gamma^{2}\right)+\frac{1}{2} \beta(\beta-\gamma)+p \delta-\alpha^{2}=\epsilon\left(\beta \delta-\alpha \gamma+\frac{1}{2} p(\beta-\gamma)\right), \tag{5.1}\\
& \frac{1}{4}\left(\beta^{2}-\gamma^{2}\right)+\frac{1}{2} \gamma(\beta-\gamma)+\delta^{2}-p \alpha=\epsilon\left(\beta \delta-\alpha \gamma+\frac{1}{2} p(\beta-\gamma)\right), \tag{5.2}\\
& p^{2}-\frac{1}{4}(\beta-\gamma)^{2}-\alpha \delta=0, \tag{5.3}\\
& \beta \delta-\alpha \gamma-\frac{1}{2} p(\beta-\gamma)=0, \tag{5.4}\\
& \beta^{2}-\gamma^{2}=\alpha^{2}-p \alpha+p \delta-\delta^{2}, \tag{5.5}\\
& \beta(\beta-\gamma)=\alpha^{2}+p \delta-p^{2}-\alpha \delta . \tag{5.6}
\end{align*}
$$

Eqs. (5.5) and (5.6) readily yield

$$
\gamma(\beta-\gamma)=p^{2}+\alpha \delta-p \alpha-\delta^{2}
$$

Substituting this and (5.6) into (5.3) we have

$$
0=\frac{1}{4}(3 p+\alpha+\delta)(2 p-\alpha-\delta)
$$

The case $p=-(1 / 3)(\alpha+\delta)$ leads to a contradiction and we study the case $p=(1 / 2)(\alpha+\delta)$. If $p=0$, the system is easy to solve and gives $\mathcal{B}=0$. For $p \neq 0$, introduce a parameter x by $\alpha=x p$ and then $\delta=(2-x) p$. Adding (5.1) and (5.2), and using (5.4), we get

$$
\beta^{2}-\gamma^{2}+6 p^{2}-6 x p^{2}=2 \epsilon p(\beta-\gamma)
$$

which upon comparing with (5.5) yields

$$
\beta-\gamma=2 \epsilon p(1-x)
$$

On the other hand, with $\alpha=x p$ and $\delta=(2-x) p$, Eq. (5.4) is

$$
\left(\frac{3}{2}-x\right) \beta+\left(\frac{1}{2}-x\right) \gamma=0
$$

Therefore

$$
\alpha=x p, \quad \delta=(2-x) p, \quad \beta=\epsilon p\left(\frac{1}{2}-x\right), \quad \gamma=\epsilon p\left(x-\frac{3}{2}\right),
$$

and one can easily check that these satisfy Eqs. (5.1)-(5.6). Thus, with respect to the basis $\left\{\bar{s}_{1}, \bar{s}_{2}, \bar{s}_{3} s_{1}, s_{2}, s_{3}\right\}$ of $\wedge^{2} T G=\wedge^{+} \oplus \wedge^{-}$, the curvature operator is given by

$$
\mathcal{R}=p^{2}\left(\begin{array}{cccccc}
-2 & 0 & 0 & 2(1-x) & 2 \epsilon(1-x) & 0 \\
0 & -2 & 0 & -2 \epsilon(1-x) & -2(1-x) & 0 \\
0 & 0 & -2 & 0 & 0 & 0 \\
2(1-x) & 2 \epsilon(1-x) & 0 & -2 & 0 & 0 \\
-2 \epsilon(1-x) & -2(1-x) & 0 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & -2
\end{array}\right) .
$$

Therefore the metric is self-dual and, for $x \neq 1$, we have $\mathcal{B}^{2}=0$ but $\mathcal{B} \neq 0$. Note also that we can also consider p as a parameter in the Lie algebras, so considering the Lie algebras and metric together we have a two-parameter family of examples. Finally the scalar curvature in these examples is $-12 p^{2}$ and taking $t=1 / p^{2}$ we have that the hyperbolic twistor space $\left(\mathcal{Z}, h_{1 / p^{2}}, \mathcal{J}_{1}\right)$, is isotropic Kähler but not indefinite Kähler.

We now turn to cases where $\alpha+\delta-p=0$ but $q \neq 0$; we also assume $p \neq 0$. The equations for $\mathcal{B}_{\mid \Lambda^{-}}^{2}$ are

$$
\begin{align*}
& \frac{1}{4}\left(\beta^{2}-\gamma^{2}\right)+\frac{1}{2} \beta(\beta-\gamma)+\alpha \delta+\delta^{2}-\alpha^{2}-\frac{1}{4} q^{2}=\epsilon\left(\frac{3}{2} \beta \delta-\frac{3}{2} \alpha \gamma+\frac{1}{2} \alpha \beta-\frac{1}{2} \delta \gamma\right) \tag{5.7}\\
& \frac{1}{4}\left(\beta^{2}-\gamma^{2}\right)+\frac{1}{2} \gamma(\beta-\gamma)+\delta^{2}-\alpha^{2}-\alpha \delta+\frac{1}{4} q^{2}=\epsilon\left(\frac{3}{2} \beta \delta-\frac{3}{2} \alpha \gamma+\frac{1}{2} \alpha \beta-\frac{1}{2} \delta \gamma\right), \tag{5.8}\\
& \alpha^{2}+\alpha \delta+\delta^{2}-\frac{3}{4} q^{2}-\frac{1}{4}(\beta-\gamma)^{2}=0 \tag{5.9}
\end{align*}
$$

and those dealing with self-duality are

$$
\begin{align*}
& \beta \delta-\alpha \gamma-\beta q+\gamma q-\alpha \beta+\delta \gamma=0, \tag{5.10}\\
& \beta^{2}-\gamma^{2}=-\alpha q+\delta q \tag{5.11}\\
& \beta(\beta-\gamma)=-2 \alpha \delta-q^{2}-2 \alpha q-\delta q \tag{5.12}
\end{align*}
$$

Eqs. (5.11) and (5.12) readily give

$$
\begin{equation*}
\gamma(\beta-\gamma)=2 \alpha \delta+q^{2}+\alpha q+2 \delta q \tag{5.13}
\end{equation*}
$$

and then subtracting (5.13) from (5.12) gives

$$
\begin{equation*}
(\beta-\gamma)^{2}=-2 q^{2}-3(\alpha+\delta) q-4 \alpha \delta \tag{5.14}
\end{equation*}
$$

Substituting (5.9) into the difference of (5.7) and (5.8) we have $q= \pm(\alpha+\delta)$ and returning to (5.9), $(\alpha-\delta)^{2}=(\beta-\gamma)^{2}$. If $q=\alpha+\delta,(5.14)$ readily gives $q=0$, so we only consider $q=-\alpha-\delta$.

If $q=-\alpha-\delta$ and $\alpha-\delta=\beta-\gamma$, Eq. (5.10) gives $\beta(\alpha-\delta)=\alpha(\alpha-\delta)$. The case $\alpha=\delta$ leads to $\mathcal{B}=0$. If $\alpha \neq \delta, \beta=\alpha$ and therefore $\gamma=\delta$. One can now check that the equations for $\mathcal{B}_{\mid \Lambda^{-}}^{2}=0$ and self-duality are satisfied with $\epsilon=-1$. The matrix of the curvature operator is

$$
\mathcal{R}=\left(\begin{array}{cccccc}
\beta^{2}-\gamma^{2} & \gamma^{2}-\beta^{2} & 0 & \frac{1}{2}\left(\gamma^{2}-\beta^{2}\right) & \frac{1}{2}\left(\beta^{2}-\gamma^{2}\right) & 0 \\
\beta^{2}-\gamma^{2} & \gamma^{2}-\beta^{2} & 0 & \frac{1}{2}\left(\gamma^{2}-\beta^{2}\right) & \frac{1}{2}\left(\beta^{2}-\gamma^{2}\right) & 0 \\
0 & 0 & -3(\beta+\gamma)^{2} & 0 & 0 & 0 \\
\frac{1}{2}\left(\gamma^{2}-\beta^{2}\right) & \frac{1}{2}\left(\beta^{2}-\gamma^{2}\right) & 0 & -(\beta+\gamma)^{2} & 0 & 0 \\
\frac{1}{2}\left(\gamma^{2}-\beta^{2}\right) & \frac{1}{2}\left(\beta^{2}-\gamma^{2}\right) & 0 & 0 & -(\beta+\gamma)^{2} & 0 \\
0 & 0 & 0 & 0 & 0 & -(\beta+\gamma)^{2}
\end{array}\right),
$$

and the matrix for \mathcal{W}^{+}is

$$
\mathcal{W}^{+}=\left(\begin{array}{ccc}
2 \beta(\beta+\gamma) & \gamma^{2}-\beta^{2} & 0 \\
\beta^{2}-\gamma^{2} & 2 \gamma(\beta+\gamma) & 0 \\
0 & 0 & -2(\beta+\gamma)^{2}
\end{array}\right)
$$

Thus we have a two-parameter family of examples with $\mathcal{B}^{2}=0$ and $\mathcal{W} \neq 0$.
Similarly $q=-\alpha-\delta$ and $\alpha-\delta=\gamma-\beta$ leads to $\beta=-\alpha, \gamma=-\delta$ and $\epsilon=1$. The resulting curvature operator is

$$
\mathcal{R}=\left(\begin{array}{cccccc}
\beta^{2}-\gamma^{2} & \beta^{2}-\gamma^{2} & 0 & \frac{1}{2}\left(\gamma^{2}-\beta^{2}\right) & \frac{1}{2}\left(\gamma^{2}-\beta^{2}\right) & 0 \\
\gamma^{2}-\beta^{2} & \gamma^{2}-\beta^{2} & 0 & \frac{1}{2}\left(\beta^{2}-\gamma^{2}\right) & \frac{1}{2}\left(\beta^{2}-\gamma^{2}\right) & 0 \\
0 & 0 & -3(\beta+\gamma)^{2} & 0 & 0 & 0 \\
\frac{1}{2}\left(\gamma^{2}-\beta^{2}\right) & \frac{1}{2}\left(\gamma^{2}-\beta^{2}\right) & 0 & -(\beta+\gamma)^{2} & 0 & 0 \\
\frac{1}{2}\left(\beta^{2}-\gamma^{2}\right) & \frac{1}{2}\left(\beta^{2}-\gamma^{2}\right) & 0 & 0 & -(\beta+\gamma)^{2} & 0 \\
0 & 0 & 0 & 0 & 0 & -(\beta+\gamma)^{2}
\end{array}\right)
$$

again giving a two-parameter family of examples with $\mathcal{B}^{2}=0$ and $\mathcal{W} \neq 0$.
In the last two examples the scalar curvature is $\tau=-6(\beta+\gamma)^{2}$ and the corresponding hyperbolic twistor space $\left(\mathcal{Z}, h_{t}, \mathcal{J}_{1}\right)$ for $t=2 /(\beta+\gamma)^{2}$ is a non-Kähler isotropic Kähler manifold.

Acknowledgements

The work of all the three authors is supported in part by NSF grant INT-9903302. The second and third-named authors are members of EDGE, Research Training Network HPRN-CT-2000-00101, supported by the European Human Potential Programme. The authors express their appreciation to Professor Christian Yankov for a computer verification of the Lie algebra computations in Section 5.

References

[1] M.F. Atiyah, N.J. Hitchin, I.M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. R. Soc. London Ser. A 362 (1978) 425-461.
[2] M. Barros, A. Romero, Indefinite Kähler manifolds, Math. Ann. 261 (1982) 55-62.
[3] D.E. Blair, J. Davidov, O. Mus̆karov, Hyperbolic twistor spaces, Rocky Mountain J. Math., in press.
[4] J. Eells, S. Salamon, Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12 (1985) 589-640.
[5] M. Fernández, M.J. Gotay, A. Gray, Compact parallelizable four dimensional symplectic and complex manifolds, Proc. Am. Math. Soc. 103 (1988) 1209-1212.
[6] Th. Friedrich, H. Kurke, Compact four-dimensional self-dual Einstein manifolds with positive scalar curvature, Math. Nachr. 106 (1982) 271-299.
[7] E. Garcia-Rio, Y. Matsushita, Isotropic Kähler structures on Engel 4-manifolds, J. Geom. Phys. 33 (2000) 288-294.
[8] N. Hitchin, Kählerian twistor spaces, Proc. London Math. Soc. 43 (1981) 133-150.
[9] P. Libermann, Sur les structures presque quaternioniennes de deuxième espèce, C. R. Acad. Sci Paris 234 (1952) 1030-1032.
[10] H. Ooguri, C. Vafa, Self-duality and $N=2$ string magic, Mod. Phys. Lett. A 5 (18) (1990) 1389-1398.
[11] J. Petean, Indefinite Káhler-Einstein metrics on compact complex surfaces, Commun. Math. Phys. 189 (1997) 227-235.

[^0]: * Corresponding author.

 E-mail addresses: blair@math.msu.edu (D.E. Blair), jtd@ math.bas.bg (J. Davidov), muskarov@math.bas.bg (O. Mus̆karov).

