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Abstract

In this paper we study two natural indefinite almost Hermitian structures on the hyperbolic twistor
space of a four-manifold endowed with a neutral metric. We show that only one of these structures
can be isotropic Kéhler and obtain the precise geometric conditions on the base manifold ensuring
this property.
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1. Introduction

Let (M, J, g) be an almost Hermitian manifold with an almost complex structuaad
compatible Riemannian metrig i.e. g(X, Y) = g(IX, JY). If J is parallel with respect to
the Levi-Civita connectiofV of g, the structure is Kéhler and this can be recognised by the
vanishing of the square norm 8/, i.e.||VJ||? = 0, equivalently by| V2|2 = 0, where
£2 is the fundamental two-form of the almost Hermitian structure. However for indefinite
metrics this is not true, i.e. in general the vanishing of the square &2 does not
always imply the K&hler conditior’y J = 0. Thus an indefinite almost Hermitian structure
is said to basotropic Kahler if |[VJ||2 = 0 andindefinite Kahler if VJ = 0. Although
there are many known examples of indefinite Kéhler structures (se€2ébgll) the
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first examples of non-Kahler isotropic Kéhler structures have been recently constructed by
Garcia-Rio and Matsushifd@]. These examples are non-integrable and are related to certain
Engel structures oR* and their compact quotients.

In this paper we give a class of integrable six-dimensional examples. These arise as
certain indefinite Hermitian structures on hyperbolic twistor spaces over four-dimensional
manifolds[3]. One of the key features of our study is the fact that the base manifolds
are endowed with neutral metrics, i.e. semi-Riemannian metrics of sign@2e This
setting naturally arises iV = 2 string theory where the additional structure of two local
supersymmetries on a worldsheet leads to considering neutral Kéhler metrics. We refer to
[10] for a fascinating discussion.

In Section 2we review the theory of hyperbolic twistor spaces over four-dimensional
manifolds with neutral metrics and their two natural indefinite almost Hermitian structures.
In Section 3we compute the square norm of the covariant derivatives of their fundamental
two-forms in terms of the curvature of the base manifold. TheBdation 4we prove that
only one of these indefinite almost Hermitian structures can be isotropic Kahler and obtain
the precise geometric conditions on the base manifold ensuring this property. Finally in
Section 5we construct two-parameter families of neutral left-invariant metrics on some
four-dimensional Lie groups whose hyperbolic twistor spaces are indefinite Hermitian and
isotropic Kahler but not indefinite Kahler.

2. Hyperbolic twistor spaces over four-dimensional manifolds

Let M be an oriented four-dimensional manifold with a neutral mefrice. a pseudo-
Riemannian metric of signatur@, 2), andey, .. ., &4 a local orthonormal frame witg A
& A €3 A €4 giving the orientation. The metriginduces a metric on bundle of bivectors,
2
A“TM, by

ik &idjl

_ |, e1=e=1 e3=e=-1
&jdik  &jdjl

1
gEene,ene)= 3

The Hodge star operator of the neutral metric acts as an involutiox?®hl and is given
by

k(€L N €2) = €3 N\ €, *(€1 N €3) = €2 A €y, (€1 N €) = —€2 A €3.

Let A~ andA™ denote the subbundles o#TM determined by the corresponding eigen-
values of the Hodge star operator. The metrics inducedhorand A™ have signature
(+’ > _)

Setting

S1=ENE —E3NE&, sS1=€ A€ +E3N ey,
2= NE—ENE&, s2=€1Ne+ A€y,

s3=6€ A€+ e Ae€g, 53 =€1 A€ — e Aeg,
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{s1, 52, s3) and {51, 52, 53} are local oriented orthonormal frames for andA™, respec-
tively.

An almost paraquaternionic structure on aC* manifold M is a rank 3-subbundI& of
the endomorphisms bundle Ef#}() which locally is spanned by a trip{d1, J2, J3}, where
J1is an almost complex structuré; an almost product structure such thigli, + J»J; = 0
andJz = JyJ2. J3is a second almost product structure which also anti-commutes/yith
and Jy; in particular{Jy1, J2, J3} is an almost quaternionic structure of the second kind in
the sense of Libermanf®]. An almost paraquaternionic manifold of dimension # 8
and neutral metrig is said to bgparaquaternionic Kéhler if the bundleE is parallel with
respect to the Levi-Civita connectiab of g. In dimension 4 this is not a restriction and
the four-dimensional analogue of a paraquaternionic Kahler manifold is a neutral, Einstein,
self-dual manifold.

We can now identifyx2TM with the bundle of skew-symmetric endomorphismdbf
by the correspondence that assigns to each A2TM the endomorphisnk, on T,M,
p = n(0), defined by

g(KoX,Y) =2g(0, X AY); X, Y eT,M.

Now the bundleE = A~ defines an almost paraquaternionic structureMpnthe local
endomorphismgJi, Jo, J3} spanningE beingJi = Ky, J2 = Ky,, J3 = K.
We can now define the twistor spageas given in3]. We first observe that if

J=y1J1+ y2J2 + y3J3,

thenj is an almost complex structure a# if and only if

i3 +rE=-1

The hyperbolic twistor space = : Z — M is then the hypersurface @& defined by this

equation. In particular the fibres &f are these hyperboloids and the reader is encouraged

to think of they; > 0 branch as one of the standard models of the hyperbolic plane.
Define a pseudo-Riemannian metric Biby

hfzj-[*g—i_t(a)a [#O,

where(, ) is the negative of the restriction of induced metricfoto the fibres. When= 1
the branches of the hyperboloids are hyperbolic planes with constant curvéture

We also use the following notation. For the meffi¢ on the fibres oft we sete; = —1
ande; = €3 = +1. Further, denoting also by the projection ofE onto M, if x; are local
coordinates o, setq; = x; o . We will identify the tangent space & at a pointx € E
with the fibre E;(,) through that point. For a sectiorof E we denote its vertical lift t&£
as a vector field by" (sos” = s o ) and frequently utilise the natural identificationsf
with J, itself and withd/dy, in terms of the fibre coordinates, y», ys.

The Levi-Civita connectiorD of g gives rise to the horizontal lifk” of a vector fieldx
to the bundleE in the usual way:

3
xh=3Y "X — Z sy ((Dx Ja, Jp) on)—.

i ab= 9yp
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We now define two almost complex structuggsand. 7> on the hyperbolic twistor spacg
as follows. Acting on horizontal vectors these are the same and giveaXy = Jo X" =
(X" where as abovg = Y y,J, is the pointo € Z considered as an endomorphism
of TM. For a vertical vector tangent t8, V = V1(3/dy1) + V2(3/dy2) + V3(3/dy3), let
TV =(=D1lo x V,k=1,2,0 € Z wherex is the vector product determined by the
paraquaternionic algebra. It is easy to check thas Hermitian with respect to botfr;
and 7.

The curvature operat® : A°TM — A2TM admits an SO(2, 2)-irreducible decomposi-
tion

R=3tl+B+W +W~

similar to the four-dimensional Riemannian case. Hedenotes the scalar curvature of the
base manifoldB3 represents the traceless Ricci tensor We- W + W~ corresponds to
the Weyl conformal curvature tensor. The meyiis said to beself-dual if W~ = 0. Also

it is often convenient to write the action & on A2TM = AT @ A~ as

%TI+W+ B
R = : 2.1)
*B %rl—i—W‘

where we have made the standard identifications; e §.veith

0 B
B 0)°

where* 3 denotes the adjoint of the upper right hand bldgk,
The theory now develops as in the quaternionic Kéhler case and we have the following
result from[3] quite analogous to the classical twistor space theory.

Theorem 2.1. Onthe hyperbolic twistor space Z of an oriented four-dimensional manifold
M with a neutral metric g we have the following:

(i) The almost complex structure 71 is integrable if and only if the metric g is self-dual.
The almost Hermitian structure (71, 4,) is semi-Kahler if and only if g is self-dual. It
isindefinite Kahler if and only if the metric g is Einstein, self-dual, and 1 = —12.

(i) The almost complex structure 7> is never integrable. The almost Hermitian structure
(J2, hy) is semi-Kahler if and only if g is self-dual. It is indefinite almost Kahler or
nearly Kéhler if and only if the metric g is Einstein, self-dual and tt = 120r 17 = —6,
respectively.

In the classical twistor space theory the almost complex structéresd 7> were in-
troduced, respectively, by Atiyah et 4l] and Eells and Salamo]. It is a result of
Atiyah et al. that7; is integrable if and only if the base manifold is self-d{i]. Un-
like J1, the almost complex structuré is never integrable as was observed by Eells
and Salamori4]. The Kahler condition fors,, J1) in the classical case was studied
by Friedrich and Kurkg6] who proved that7; is Kahler if and only if the base man-
ifold is Einstein, self-dual withhr = 12,¢ > 0. Note that the only compact Einstein,
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self-dual manifolds of positive scalar curvature sfe@ndC P2 with their canonical metrics
[6,8].

3. Norm of the covariant derivative of the fundamental two-form

We denote byj - ||; the norm with respect th, and by|| - || the norm with respect te.
Consider the almost Hermitian manifolds, 7, 4,),k = 1, 2. The fundamental two-forms
are defined by2, (X, Y) = h (X, JrY) k = 1, 2, but for simplicity we denote them hy.
Similarly we denote the Levi-Civita connection faf simply by V.

We shall compute the norm 852 in terms of the components & in the decomposition
(2.1).

Lemma3.1. Thenormof V§2 at o € Zisgiven by

2 2 172
Ivel? =- [; (2+%) +S5a+ (—1)")} +[a+ 5@+ 2] s W o)

B 2
(BIW @7 =~ gla W (0)? = 21V |1°) +1 [nzs(a)nz - %}

+(=D*ttrOV 0 S,)%,

where S, is the endomor phism of Ny p = 7(0), defined by S, A =0 x A, A € Ay and
x denotes the vector product determined by the paraquaternionic algebra.

Proof. Let (e1, e, €3, &4) a local orthonormal frame on a neighbourhoodhof M such
that|et]| = ||e2]] = —|le3]l = —|les]|. As before we writee; = ¢20 = —e3 = —e4 = 1 and
we write g, for the sign of the non-zero numberLet V be a vertical tangent vector such
thath,(V, V) = ¢ Then(el, €, €k, €}, V, 7x V) is an orthonormal frame df, Z and we
have

IVRIZ = Y eatral(VvR)(EL €)% + (Vv 2)(El, €))7
1<a,b<4

+2 ) easrel (Ve (€, V)2 + (Vo 2)(8), Tk V). (3.1)
1<a,b<4

For simplicity, we denote the complex structufg on 7, M defined byo by K. Then itis
easy to check that

g(A, X AKY) = 3g(0, A)g(X,Y) —g(o x A, X A Y) (3.2)
foranyA € A, andX, Y € T, M. In particular

gA, X AKY+KXAY)=—-2g(c x A, X AY). (3.3)
Note thatX AKY+KXAY € A



D.E. Blair et al./ Journal of Geometry and Physics 52 (2004) 74-88 79

Now for V e N, We haveWw™ (V) =0, W~ (V) € Ny andB(V) € A;;. Hence from
Lemma 2 in[3] and(3.3) it follows that

> easn(Vv2)(€), )2

1<a,b<4

Z sasbg((Z—l— G)V to X W (o x V), ea/\eb)
1<a,b<4

2

2
=(2+%) ||V||2+2z( )g(axVW (6 x V) +2)o x W (o x V)|?
(2+ ) il +2¢( )g(awi (o xV))
+2 W (o x V)II? = g0, W™ (o x V). (3.4)

ReplacingV by J:V in (3.4)and adding t¢3.4) we have

doii= ) earn(VvR)EL €)%+ (Vv )l €)?)

1<a,b<4
_2(2+ ) V2 +2r(2+ )(g(vw (V) + g0 x W= (o x V)
+2(IW T (VIPHIW = (ox V) 1D —12(g(o, W (V)P +glo, W (ox V )?).

(3.5)
SinceW ™ has vanishing trace,

glo, W™ (0) — [tlg(V, W™ (V) — ltlgle x VW (o x V)) =0
and hence

VW (V) +glo x VW (o x V) = %g(m W (0)). (3.6)
We also have

V=) + W= (@ x V)2 = LW~ @I = W71, (3.7)

and

g W (V)2 +gla W (o x V))? = %(g(o, W= (@)? = IW-@I5.  (3.8)

Egs. (3.5)—(3.8how give

2
>, = -2 (24 ) s (24 ) se W)
+ rst<2||w @I = W12 = gl W™ (0))?). (3.9)
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We now compute the second sum($l). By Lemma 2 in[3] we get

Y cats(Ve D). V)?

1<a,b<4

2
= %<||R<V)||2+ IR x V)I?)

2
+5EDE Y cumngRIV) e A @)g(R(o x V), € A Key).

1<a,b<4
Now for V € Ny
IR(V)IZ = 1BV + 721 VIZ + 3rg(V. W (V) + W™ (V)2

and

IR(e x V)I? = [1B(o x V)II2+ %72 VII?+ 3tgo x W (0 x V)

+HIW (o x V)|

(3.10)

(3.11)

(3.12)

Again forV e Ny, SetP(V) = (7/6)V + W™ (V). ThenR(V) = P(V) + B(V) and we

have

D eatrg(R(V), € A€)g(R(0 x V), & A Kep)
1<a,b<4

= Y catp8(P(V), € A )P0 x V), 8 A Kep)
1<a,b<4

+ ) eatbg(P(V), € A &)g(B(o x V), & A Key)
1<a,b<4

+ ) eatpgB(V). € A&)g(Po x V), & A Key)
1<a,b<4

+ Y eaEngB(V), & A &)gBo x V), e A Kep).
1<a,b<4

Note that the latter three sums vanish because, for example,

caep8(P(V), € Nep)g(B(o x V), &, A Kep)
+epsag(P(V), 8, A e)g(B(o x V), e A Key)
=e46p8(P(V), 6, N&)g(B(o x V), e, A Key + Ke; Aey) =0

sincee, A Ke, + Ke, A€, € Ny



D.E. Blair et al./ Journal of Geometry and Physics 52 (2004) 74-88 81

Now using(3.2) we get

D" catbg(P(V), €4 A €)E(P(o x V), & A Kep)
1<a,b<4

1
= Y eatsg(P(V), € A &) [ég(a P(o x V))g(€s &)
1<a,b<4

—glox P(oxV),e A eb)i| =—g(P(V),o0 x P(c xV))

2
=g(o x P(V), P(GXV))——HVH + = [(UXVW (o xV))

+g(V,W~ (V))]+g(0><W (V),W (o x V).

Continuing using=q. (3.6) this becomes

T28t TEs

oy B _ 052
3 T g 8@ W () = g(WT e S)%(V), V).

Therefore

D eatrg(R(V), 6 A€)g(R(0 x V), & A Key)
1<a,b<4
2
= T+ @ W (@) = LW 0 SRV V). (3.13)

Now from Egs. (3.10)—(3.13)ve obtain

Y caes (Vg D). V)?

1<a,b<4

__w LA+ (- 1>)+—<1+< g0, W™ (0))

& o 2 IBI?
+z(||w @7 =W~ ||>+ 1B@)I* = =~

t
+(—1)k+l%g(o/v* o SU)Z(V), V). (3.14)
Applying (3.14)to J; V and addind3.14)we have

Y, =2 ) eaen((Ve (&), V)2 + (Vg 2)(8), TiV)P)

1<a,b<4

_. (- 1>>+—<1+< Dbyg(o W (0))

2
+(=DFre, trOV ™ o S5)? (3.15)

B 2
+e (IW (@)% = W12 + te, (IIB(a)IIZ - u)
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since(W™ o S;)(0) = 0. Now since||V52||,2 = &(}_1+ Y ), the lemma follows from
(3.9) and (3.15) O

4. |Isotropic Kahler hyperbalic twistor spaces
We now prove the following theorem.

Theorem 4.1. The hyperbolic twistor space (Z, h;, Jx), k = 1, 2, isisotropic Kahler if

andonlyifk =1, W~ = O,BfA, =0and 7 = —12.

Proof. Setting

1 It X
fiy = |4+ 5@+ (-1

o2 IBIZ T2 m\2 12 o
ho) = =217 - 2 [t—2(2+€) + 51+ (-

it follows that || V£2||2 = 0 if and only if

g W™ (0))? = f(Hg(a, W™ (0)) + 3IW = (0II% + 1B(0)]|?
+(=DMrW™ 0 85)% 4 h(z) 4.1)
forallo € Z.
Let
D = {(y1, y2, y3) € R3|y2 — y5 — y3 > 0},
and|lyl? = y2 — y3 — y2. Then(y1/Ilyl, y2/lvll, y3/llyll) belongs to the hyperboloid
y%—y%—y%:laﬂd

0=”})—1”S1+£32+£s
y

3 € Z,.
Iyl Iyl P

For simplicity denote by the inner producg(s;, W~ (s;)). ThenEg. (4.1)can be written
in the form

3 2 3
Y aipyiyi | =P D2 vivivi
ij=1 i, j=1

for some coefficientg;;. Settingys = 0 and comparing coefficients gives; = —a2»
andai12 = 0. Similarly @11 = —a33 andaiz = 0. On the other hand & trW~ =
a11 — a2 — a3z Which then givesi11 = a22 = azz = 0. Hence our equation takes the form

3
do5y5y5 = (V3 — 5 — ¥3) (Z Vljyi)’j) :

ij=1
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which clearly implies thatroz = 0. Thusg(s;, W™ (sj)) = Oforall 1 < i, j < 3 giving
that'w™ = 0.
Eq. (4.1)now takes the form

IB@)I1? = 1Bl + g(1), (4.2)
where
2 N2 2 X
g0 =5 (2+ E) + 5L+ DA

Note thatg(r) > 0 with equality if and only ifk = 1 andrr = —12.
Applying the same arguments as above we se&iig#. 2)is equivalentt@(B(s;), B(s;)) =
Oforl<i# j<3and

IBGsp) 1> = —1Bs2)[I> = —1B(s3)|* = 311BI1* + g(1).
Since

IBGs1? = 1B(s2)[1> — 1B(s3) 1> = 311BI1%,
we get

IBGsII” = —[1B(s2)[I> = —1B(s3)[1* = —32().

Suppose now thaf(r) > 0 and note that iflx|> > 0 and|y||? > 0, we have(x, y)? >
Ixl12llyl12. Then

0 = (B(s2), B(s3))? = B(s2) |21 B(s3)1? = (38(1))?,
a contradiction. Thereforg(r) = 0, i.e.k = 1, t = —12 andg(B(s;), B(s;)) = 0 for all

i, j. Finally sinceB : A°TM — A2TM is a symmetric operator it follow thzﬁ‘zA_ =0.0

5. Examples of neutral self-dual metricswith 8% =0

Toillustrate the phenomena of the theorem of the preceding section, we provide examples
of neutral self-dual metrics wits?> = 0 for which B # 0. We do not know of examples
with Ble, = 0 butB? # 0. We give two classes of examples; in the first class we have
W = 0 and in the second class we hase™ = 0 butWw™* # 0.

Let G be a Lie group with Lie algebrgdefined by

[E1, E2] = aE2 + BE3, [E1, E3] = yE2 + SE3, [E1, E4] = pE4,
[E2, E3] = QE4, [E2, E4] =0, [E3, E4] =0

together with the conditiorte + § — p)g = 0 which gives the Jacobi identity. Define a
neutral left-invariant metrig on G in terms of the dual basi&'} by

¢g=FE'@E'+F°Q F>—~ EF*Q E>— E°Q E°.
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It is now straightforward to compute the Levi-Civita connection and the curvature tensor
of g. This in turn enables one to compute the curvature opefaton?TG — A2TG with
respect to the bas¢s, 5», 53} and{s1, s2, s3} of AT andA~, respectively. For the study of
B we need:

g(R(s1),51) = (B — v + 3(B(B — 1) + pd — &® — 34,

g(R(s1),52) = B8 —ay + 3p(B—1).  g(R(s1),53) =0,

g(R(s2),51) = B8 —ay + 3p(B - 7),

8(R(s2),52) = 5(B° — v2) + 3(V(B— V) + 8 — pa+ 34°,

g(R(s2),s3) =0, g(R(s3),s1) =0,

g(R(s3).52) =0,  g(R(s3).53) = p* — 34° — 3(B— »)? — as.

For the study oV~ we need:
g(R(51).51) = 3(B% — v®) + 3B(B— V) — eq + 3¢° — o® — ps,
g(R(G1).52) = B8 —ay + 3(B— Vg —3p(B—1).  gR(G1).53) =0,
g(R(52).52) = 5(B* — v?) + 3¥(B— ) + &% + pa + 8q — 34°.
g(R(2).53) =0,  g(R(53),53) = p° — pA+ 3¢° + 3(B— »)* + .
For the study o#V"we need:
g(R(s1).51) = 3(B* — v*) + 3B(B — ) + aq + 3¢° — o® — pé,
g(R(s1),52) = B8 —ay — 3(B—»a—3p(B—1).  gR(s1),53) =0,
g(R(s2).52) = 3(B2 — v®) + 3¥(B— ) + 8% + pa — 8q — 34°.
g(R(s2).53) =0,  g(R(s3),s3) = p* + PA+ 3¢q° % + 5(B — »)? + b
We again recall the decomposition of the curvature operator
R=3tl+B+WH4+Ww-

written as

oo (s +WY B
N *B %rI+W_ ’

where we have made the standard identifications, especialiyath

(5 3)

Settingb;; = g(R(si),s;) and recalling that the induced metrics o and A™ have
signature(+, —, —), the matrices foB3 and its adjoint' 3 are

bi1  b12 0 b1 bx 0
—boy —bypp O , —b1p —bypp O .
0 0 —b33 0 0 —b33
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Thus the condition foBle, to vanish becomes

bf; — b3, b11b1p — ba1b2o O
—b11b12 + b21b22 b3, — b3, 0 | =0
0 0 b3,

From here we see th@zA, will vanish if and only if

8(R(s1), 51) = €g(R(s1),52), g(R(s2),52) = €g(R(s2).51),  &(R(s3),53) =0,
wheree = £1. Similarly we see that self-duality becomes

8(R(s1),52) =0, g(R(s1),51) = —g(R(s2), s2) = —g(R(s3), 53).

Since the Jacobi identity leads to the conditiant § — p)g = 0, we first consider the case
g = 0. We then have the following equations

B = v+ 3B(B— ) + ps — o® = e(B5 —ay + 3p(B— V). (5.1)
FB =Y+ 3v(B—y) + 8 — pu=e(Bs —ay + 3p(B— V). (5.2)
PP-2B-p?-as=0, (5.3)
Bs—ay —3p(B—y) =0, (5.4)
B2 —y? = o — pa+ ps — 82, (5.5)
BB —y) =+ ps — p* —ab. (5.6)

Egs. (5.5) and (5.6)adily yield
V(B —v) = p* +ad — pa — &,
Substituting this an@b.6)into (5.3)we have
0=1@p+a+82p—a-29).

The case = —(1/3) (¢ +6) leads to a contradiction and we study the gase (1/2) («+6).
If p =0, the system is easy to solve and gif&s: 0. For p # 0, introduce a parameter
by @ = xp and thens = (2 — x) p. Adding(5.1) and (5.2)and using5.4), we get

B? — y? +6p” — 6xp” = 2¢p(B — 1),

which upon comparing witkb.5) yields
B—v=2p1—x).

On the other hand, with = xp and$ = (2 — x) p, Eq. (5.4)is

G-0B+G-ny=0
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Therefore

a=xp, §=Q-x)p, PB=ep(3—x), y=eplx—3),

and one can easily check that these satisfy Egs. (5.1)—(5.6). Thus, with respect to the basis
(51, 52, 5351, 52, 53} of A2TG = AT @ A, the curvature operator is given by

2 0 0 2Al—x 2e(l—x O
0 2 0 —2(1-x) -21-x) O

. 0 0 2 0 0 0
R=r"l 20-v 2e0-n o0 2 0 0
—2¢(1—x) —-21—x) O 0 -2 0

0 0 0 0 )

Therefore the metric is self-dual and, foe£ 1, we havel3? = 0 butB # 0. Note also that
we can also considgras a parameter in the Lie algebras, so considering the Lie algebras and
metric together we have a two-parameter family of examples. Finally the scalar curvature
in these examples is12p? and taking = 1/ p? we have that the hyperbolic twistor space
(Z, hyj 2, J1), is isotropic Kahler but not indefinite Kahler.

We now turn to cases where+ § — p = 0 butg # 0; we also assumg # 0. The
equations foB‘ZA, are

1B+ BB +as+ 8 —a? — 167 = (35— Say + FaB - 15y),
(5.7)

LB =) +3pB—p + 62— o —as+ 2q? = (35 — 3y + 1ap — Loy,

(5.8)

o +ad+8 — 347~ 1(B-1? =0, (5.9)
and those dealing with self-duality are

s —ay—Bq+yg—af+3y =0, (5.10)

B2 — v = —aq +4q. (5.11)

BB —y) = —208 — ¢* — 209 — 8q. (5.12)
Egs. (5.11) and (5.12gadily give

VB —y) = 208 + ¢* + ag + 28q, (5.13)
and then subtracting.13)from (5.12)gives

(B—9? =—2¢° — 3(a + 8)q — 4as. (5.14)

Substituting(5.9)into the difference of5.7) and (5.8Wwe havey = £(« + §) and returning
t0 (5.9), (0 — 8)% = (B— p)2. If ¢ = a + 8, (5.14)readily givesy = 0, so we only consider
q=—a—24.
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If g= —a—8anda — 8§ = B — y, Eq. (5.10)gives (o — §) = a(a — §). The case
a = §leadstoB = 0. If @ # 8, B = « and thereforer = 5. One can now check that
the equations foBle, = 0 and self-duality are satisfied with= —1. The matrix of the

curvature operator is

-y - p 0 102-8 1B —1H 0
-y - p 0 102-P0 3B —9? 0
. 0 0 -3(B+7)? 0 0 0
| 302-8 LD 0 —(B+»)? 0 0 ’
502-P1 3B —v? 0 0 —(B+7)? 0
0 0 0 0 0 —(B+ p)?

and the matrix foww+ is

2B+y)  v?P—p? 0
Wh=1 p2—y2 2yB+y 0
0 0 —2(B + )2

Thus we have a two-parameter family of examples th= 0 andW # 0.
Similarlyg = —a« —danda — § = y — Bleads tof = —«, y = —§ ande = 1. The
resulting curvature operator is

B—y> PP 0 102-82 32— P 0
y? — B y?— p? 0 3(B2—yvH 3(B2—vD 0
- 0 0 —3(B+p)? 0 0 0
50285 32 -PD 0 —(B+y)? 0 0
382 —v®  3(B2—vP 0 0 —(B+p? 0
0 0 0 0 0 —(B+p?

again giving a two-parameter family of examples with= 0 and # 0.
In the last two examples the scalar curvature is —6(8 + )2 and the corresponding

hyperbolic twistor spacez, h,, J1) for t = 2/(B + y)? is a non-Kéahler isotropic Kahler
manifold.
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