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Abstract

In this paper we study two natural indefinite almost Hermitian structures on the hyperbolic twistor
space of a four-manifold endowed with a neutral metric. We show that only one of these structures
can be isotropic Kähler and obtain the precise geometric conditions on the base manifold ensuring
this property.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let (M, J, g) be an almost Hermitian manifold with an almost complex structureJ and
compatible Riemannian metricg, i.e.g(X, Y) = g(JX, JY). If J is parallel with respect to
the Levi-Civita connection∇ of g, the structure is Kähler and this can be recognised by the
vanishing of the square norm of∇J , i.e.‖∇J‖2 = 0, equivalently by‖∇Ω‖2 = 0, where
Ω is the fundamental two-form of the almost Hermitian structure. However for indefinite
metrics this is not true, i.e. in general the vanishing of the square norm‖∇J‖2 does not
always imply the Kähler condition,∇J = 0. Thus an indefinite almost Hermitian structure
is said to beisotropic Kähler if ‖∇J‖2 = 0 andindefinite Kähler if ∇J = 0. Although
there are many known examples of indefinite Kähler structures (see, e.g.[2,5,11]) the
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first examples of non-Kähler isotropic Kähler structures have been recently constructed by
Garcia-Rio and Matsushita[7]. These examples are non-integrable and are related to certain
Engel structures onR4 and their compact quotients.

In this paper we give a class of integrable six-dimensional examples. These arise as
certain indefinite Hermitian structures on hyperbolic twistor spaces over four-dimensional
manifolds[3]. One of the key features of our study is the fact that the base manifolds
are endowed with neutral metrics, i.e. semi-Riemannian metrics of signature(2,2). This
setting naturally arises inN = 2 string theory where the additional structure of two local
supersymmetries on a worldsheet leads to considering neutral Kähler metrics. We refer to
[10] for a fascinating discussion.

In Section 2we review the theory of hyperbolic twistor spaces over four-dimensional
manifolds with neutral metrics and their two natural indefinite almost Hermitian structures.
In Section 3we compute the square norm of the covariant derivatives of their fundamental
two-forms in terms of the curvature of the base manifold. Then inSection 4we prove that
only one of these indefinite almost Hermitian structures can be isotropic Kähler and obtain
the precise geometric conditions on the base manifold ensuring this property. Finally in
Section 5we construct two-parameter families of neutral left-invariant metrics on some
four-dimensional Lie groups whose hyperbolic twistor spaces are indefinite Hermitian and
isotropic Kähler but not indefinite Kähler.

2. Hyperbolic twistor spaces over four-dimensional manifolds

Let M be an oriented four-dimensional manifold with a neutral metricg, i.e. a pseudo-
Riemannian metric of signature(2,2), ande1, . . . , e4 a local orthonormal frame withe1 ∧
e2 ∧ e3 ∧ e4 giving the orientation. The metricg induces a metric on bundle of bivectors,
∧2TM, by

g(ei ∧ ej, ek ∧ el) = 1

2

∣∣∣∣ εiδik εiδil
εjδjk εjδjl

∣∣∣∣ , ε1 = ε2 = 1, ε3 = ε4 = −1.

The Hodge star operator of the neutral metric acts as an involution on∧2TM and is given
by

∗(e1 ∧ e2) = e3 ∧ e4, ∗(e1 ∧ e3) = e2 ∧ e4, ∗(e1 ∧ e4) = −e2 ∧ e3.

Let ∧− and∧+ denote the subbundles of∧2TM determined by the corresponding eigen-
values of the Hodge star operator. The metrics induced on∧− and ∧+ have signature
(+,−,−).

Setting

s1 = e1 ∧ e2 − e3 ∧ e4, s̄1 = e1 ∧ e2 + e3 ∧ e4,

s2 = e1 ∧ e3 − e2 ∧ e4, s̄2 = e1 ∧ e3 + e2 ∧ e4,

s3 = e1 ∧ e4 + e2 ∧ e3, s̄3 = e1 ∧ e4 − e2 ∧ e3,
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{s1, s2, s3} and{s̄1, s̄2, s̄3} are local oriented orthonormal frames for∧− and∧+, respec-
tively.

An almost paraquaternionic structure on aC∞ manifoldM is a rank 3-subbundleE of
the endomorphisms bundle End(TM) which locally is spanned by a triple{J1, J2, J3}, where
J1 is an almost complex structure,J2 an almost product structure such thatJ1J2+J2J1 = 0
andJ3 = J1J2. J3 is a second almost product structure which also anti-commutes withJ1
andJ2; in particular{J1, J2, J3} is an almost quaternionic structure of the second kind in
the sense of Libermann[9]. An almost paraquaternionic manifold of dimension 4n ≥ 8
and neutral metricg is said to beparaquaternionic Kähler if the bundleE is parallel with
respect to the Levi-Civita connectionD of g. In dimension 4 this is not a restriction and
the four-dimensional analogue of a paraquaternionic Kähler manifold is a neutral, Einstein,
self-dual manifold.

We can now identify∧2TM with the bundle of skew-symmetric endomorphisms ofTM
by the correspondence that assigns to eachσ ∈ ∧2TM the endomorphismKσ on TpM,
p = π(σ), defined by

g(KσX, Y) = 2g(σ,X ∧ Y); X, Y ∈ TpM.

Now the bundleE = ∧− defines an almost paraquaternionic structure onM, the local
endomorphisms{J1, J2, J3} spanningE beingJ1 = Ks1, J2 = Ks2, J3 = Ks3.

We can now define the twistor spaceZ as given in[3]. We first observe that if

j = y1J1 + y2J2 + y3J3,

thenj is an almost complex structure onM if and only if

−y2
1 + y2

2 + y2
3 = −1.

The hyperbolic twistor space π : Z → M is then the hypersurface ofE defined by this
equation. In particular the fibres ofZ are these hyperboloids and the reader is encouraged
to think of they1 > 0 branch as one of the standard models of the hyperbolic plane.

Define a pseudo-Riemannian metric onZ by

ht = π∗g + t〈, 〉, t �= 0,

where〈, 〉 is the negative of the restriction of induced metric onE to the fibres. Whent = 1
the branches of the hyperboloids are hyperbolic planes with constant curvature−1.

We also use the following notation. For the metric〈, 〉 on the fibres ofE we setε1 = −1
andε2 = ε3 = +1. Further, denoting also byπ the projection ofE ontoM, if xi are local
coordinates onM, setqi = xi ◦ π. We will identify the tangent space ofE at a pointx ∈ E

with the fibreEπ(x) through that point. For a sections of E we denote its vertical lift toE
as a vector field bysv (sosv = s ◦ π) and frequently utilise the natural identifications ofJv

a

with Ja itself and with∂/∂ya in terms of the fibre coordinatesy1, y2, y3.
The Levi-Civita connectionD of g gives rise to the horizontal liftXh of a vector fieldX

to the bundleE in the usual way:

Xh =
∑
i

Xi ∂

∂qi
−

3∑
a,b=1

εby
a(〈DXJa, Jb〉 ◦ π)

∂

∂yb
.
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We now define two almost complex structuresJ1 andJ2 on the hyperbolic twistor spaceZ
as follows. Acting on horizontal vectors these are the same and given byJ1X

h
σ = J2X

h
σ =

(jX)hσ where as abovej = ∑
yaJa is the pointσ ∈ Z considered as an endomorphism

of TM. For a vertical vector tangent toZ, V = V 1(∂/∂y1) + V 2(∂/∂y2) + V 3(∂/∂y3), let
JkV = (−1)k−1σ × V , k = 1,2, σ ∈ Z, where× is the vector product determined by the
paraquaternionic algebra. It is easy to check thatht is Hermitian with respect to bothJ1
andJ2.

The curvature operatorR : ∧2TM → ∧2TM admits an SO(2, 2)-irreducible decomposi-
tion

R = 1
6τI + B+W+ +W−

similar to the four-dimensional Riemannian case. Hereτ denotes the scalar curvature of the
base manifold,B represents the traceless Ricci tensor andW =W+ +W− corresponds to
the Weyl conformal curvature tensor. The metricg is said to beself-dual if W− = 0. Also
it is often convenient to write the action ofR on∧2TM = ∧+ ⊕ ∧− as

R =
( 1

6τI +W+ B

∗B 1
6τI +W−

)
, (2.1)

where we have made the standard identifications; e.g. ofB with(
0 B

∗B 0

)
,

where∗B denotes the adjoint of the upper right hand block,B.
The theory now develops as in the quaternionic Kähler case and we have the following

result from[3] quite analogous to the classical twistor space theory.

Theorem 2.1. On the hyperbolic twistor spaceZ of an oriented four-dimensional manifold
M with a neutral metric g we have the following:

(i) The almost complex structure J1 is integrable if and only if the metric g is self-dual.
The almost Hermitian structure (J1, ht) is semi-Kähler if and only if g is self-dual. It
is indefinite Kähler if and only if the metric g is Einstein, self-dual, and tτ = −12.

(ii) The almost complex structure J2 is never integrable. The almost Hermitian structure
(J2, ht) is semi-Kähler if and only if g is self-dual. It is indefinite almost Kähler or
nearly Kähler if and only if the metric g is Einstein, self-dual and tτ = 12or tτ = −6,
respectively.

In the classical twistor space theory the almost complex structuresJ1 andJ2 were in-
troduced, respectively, by Atiyah et al.[1] and Eells and Salamon[4]. It is a result of
Atiyah et al. thatJ1 is integrable if and only if the base manifold is self-dual[1]. Un-
like J1, the almost complex structureJ2 is never integrable as was observed by Eells
and Salamon[4]. The Kähler condition for(ht,J1) in the classical case was studied
by Friedrich and Kurke[6] who proved thatJ1 is Kähler if and only if the base man-
ifold is Einstein, self-dual withtτ = 12, t > 0. Note that the only compact Einstein,
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self-dual manifolds of positive scalar curvature areS4 andCP2 with their canonical metrics
[6,8].

3. Norm of the covariant derivative of the fundamental two-form

We denote by‖ · ‖t the norm with respect toht and by‖ · ‖ the norm with respect tog.
Consider the almost Hermitian manifolds(Z,Jk, ht),k = 1,2. The fundamental two-forms
are defined byΩk,t(X, Y) = ht(X,JkY) k = 1,2, but for simplicity we denote them byΩ.
Similarly we denote the Levi-Civita connection ofht simply by∇.

We shall compute the norm of∇Ω in terms of the components ofR in the decomposition
(2.1).

Lemma 3.1. The norm of ∇Ω at σ ∈ Z is given by

‖∇Ω‖2
t = −

[
2

t

(
2 + tτ

6

)2
+ tτ2

18
(1 + (−1)k)

]
+
[
4 + tτ

3
(2 + (−1)k)

]
g(σ,W−(σ))

t(3‖W−(σ)‖2 − g(σ,W−(σ))2 − 2‖W−‖2) + t

[
‖B(σ)‖2 − ‖B‖2

2

]
+(−1)kt tr(W− ◦ Sσ)

2,

where Sσ is the endomorphism of ∧−
p , p = π(σ), defined by SσA = σ × A, A ∈ ∧−

p , and
× denotes the vector product determined by the paraquaternionic algebra.

Proof. Let (e1, e2, e3, e4) a local orthonormal frame on a neighbourhood ofp ∈ M such
that‖e1‖ = ‖e2‖ = −‖e3‖ = −‖e4‖. As before we writeε1 = ε2 = −ε3 = −ε4 = 1 and
we writeεt for the sign of the non-zero numbert. Let V be a vertical tangent vector such
thatht(V, V ) = εt . Then(eh1, eh2, eh3, eh4, V,JkV ) is an orthonormal frame ofTσZ and we
have

‖∇Ω‖2
t =

∑
1≤a,b≤4

εaεbεt [(∇VΩ)(eha, ehb)
2 + (∇JkVΩ)(eha, ehb)

2]

+2
∑

1≤a,b≤4

εaεbεt [(∇eha
Ω)(ehb, V )2 + (∇eha

Ω)(ehb,JkV )2]. (3.1)

For simplicity, we denote the complex structureKσ onTpM defined byσ by K. Then it is
easy to check that

g(A,X ∧ KY) = 1
2g(σ,A)g(X, Y) − g(σ × A,X ∧ Y) (3.2)

for anyA ∈ ∧−
p andX, Y ∈ TpM. In particular

g(A,X ∧ KY + KX ∧ Y) = −2g(σ × A,X ∧ Y). (3.3)

Note thatX ∧ KY + KX ∧ Y ∈ ∧−
p .
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Now for V ∈ ∧−
p we haveW+(V ) = 0,W−(V ) ∈ ∧−

p andB(V ) ∈ ∧+
p . Hence from

Lemma 2 in[3] and(3.3) it follows that

∑
1≤a,b≤4

εaεb(∇VΩ)(eha, ehb)
2

=
∑

1≤a,b≤4

εaεbg
((

2 + tτ

6

)
V−tσ ×W−(σ × V ), ea ∧ eb

)2

=
(
2 + tτ

6

)2
‖V‖2 + 2t

(
2 + tτ

6

)
g(σ×V,W−(σ × V )) + t2‖σ ×W−(σ × V )‖2

=
(
2 + tτ

6

)2
‖V‖2 + 2t

(
2 + tτ

6

)
g(σ × V,W−(σ × V ))

+ t2‖W−(σ × V )‖2 − t2g(σ,W−(σ × V ))2. (3.4)

ReplacingV byJkV in (3.4)and adding to(3.4)we have

∑
1 :=

∑
1≤a,b≤4

εaεb((∇VΩ)(eha, ehb)
2 + (∇JkVΩ)(eha, ehb)

2)

= 2
(
2 + tτ

6

)2
‖V‖2 + 2t

(
2 + tτ

6

)
(g(V,W−(V )) + g(σ × V,W−(σ × V )))

+ t2(‖W−(V )‖2+‖W−(σ×V )‖2)−t2(g(σ,W−(V ))2+g(σ,W−(σ×V ))2).

(3.5)

SinceW− has vanishing trace,

g(σ,W−(σ)) − |t|g(V,W−(V )) − |t|g(σ × V,W−(σ × V )) = 0

and hence

g(V,W−(V )) + g(σ × V,W−(σ × V )) = εt

t
g(σ,W−(σ)). (3.6)

We also have

‖W−(V )‖2 + ‖W−(σ × V )‖2 = εt

t
(‖W−(σ)‖2 − ‖W−‖2), (3.7)

and

g(σ,W−(V ))2 + g(σ,W−(σ × V ))2 = εt

t
(g(σ,W−(σ))2 − ‖W−(σ)‖2). (3.8)

Eqs. (3.5)–(3.8)now give

∑
1

= −2εt
t

(
2 + tτ

6

)2
+ 2εt

(
2 + tτ

6

)
g(σ,W−(σ))

+ tεt(2‖W−(σ)‖2 − ‖W−‖2 − g(σ,W−(σ))2). (3.9)
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We now compute the second sum in(3.1). By Lemma 2 in[3] we get

∑
1≤a,b≤4

εaεb(∇eha
Ω)(ehb, V )2

= t2

4
(‖R(V )‖2 + ‖R(σ × V )‖2)

+ t2

2
(−1)k

∑
1≤a,b≤4

εaεbg(R(V ), ea ∧ eb)g(R(σ × V ), ea ∧ Keb). (3.10)

Now for V ∈ ∧−
p ,

‖R(V )‖2 = ‖B(V )‖2 + 1
36τ

2‖V‖2 + 1
3τg(V,W

−(V )) + ‖W−(V )‖2, (3.11)

and

‖R(σ × V )‖2 = ‖B(σ × V )‖2 + 1
36τ

2‖V‖2 + 1
3τg(σ × V,W−(σ × V ))

+‖W−(σ × V )‖2. (3.12)

Again forV ∈ ∧−
p , setP(V ) = (τ/6)V +W−(V ). ThenR(V ) = P(V ) + B(V ) and we

have

∑
1≤a,b≤4

εaεbg(R(V ), ea ∧ eb)g(R(σ × V ), ea ∧ Keb)

=
∑

1≤a,b≤4

εaεbg(P(V ), ea ∧ eb)g(P(σ × V ), ea ∧ Keb)

+
∑

1≤a,b≤4

εaεbg(P(V ), ea ∧ eb)g(B(σ × V ), ea ∧ Keb)

+
∑

1≤a,b≤4

εaεbg(B(V ), ea ∧ eb)g(P(σ × V ), ea ∧ Keb)

+
∑

1≤a,b≤4

εaεbg(B(V ), ea ∧ eb)g(B(σ × V ), ea ∧ Keb).

Note that the latter three sums vanish because, for example,

εaεbg(P(V ), ea ∧ eb)g(B(σ × V ), ea ∧ Keb)

+εbεag(P(V ), eb ∧ ea)g(B(σ × V ), eb ∧ Kea)

= εaεbg(P(V ), ea ∧ eb)g(B(σ × V ), ea ∧ Keb + Kea ∧ eb) = 0

sinceea ∧ Keb + Kea ∧ eb ∈ ∧−
p .
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Now using(3.2)we get∑
1≤a,b≤4

εaεbg(P(V ), ea ∧ eb)g(P(σ × V ), ea ∧ Keb)

=
∑

1≤a,b≤4

εaεbg(P(V ), ea ∧ eb)
[

1

2
g(σ, P(σ × V ))g(ea, eb)

−g(σ × P(σ × V ), ea ∧ eb)
]

= −g(P(V ), σ × P(σ × V ))

= g(σ × P(V ), P(σ × V )) = τ2

36
‖V‖2 + τ

6
[g(σ × V,W−(σ × V ))

+ g(V,W−(V ))] + g(σ ×W−(V ),W−(σ × V )).

Continuing usingEq. (3.6), this becomes

−τ2εt

36t
+ τεt

6t
g(σ,W−(σ)) − g((W− ◦ Sσ)

2(V ), V ).

Therefore∑
1≤a,b≤4

εaεbg(R(V ), ea ∧ eb)g(R(σ × V ), ea ∧ Keb)

= −τ2εt

36t
+ τεt

6t
g(σ,W−(σ)) − εt

t
g((W− ◦ Sσ)

2(V ), V ). (3.13)

Now fromEqs. (3.10)–(3.13)we obtain∑
1≤a,b≤4

εaεb(∇eha
Ω)(ehb, V )2

= − tτ2εt

72
(1 + (−1)k) + tτεt

12
(1 + (−1)k)g(σ,W−(σ))

+ tεt

4
(‖W−(σ)‖2 − ‖W−‖2) + tεt

4

(
‖B(σ)‖2 − ‖B‖2

2

)

+(−1)k+1 tεt

2
g((W− ◦ Sσ)

2(V ), V ). (3.14)

Applying (3.14)toJkV and adding(3.14)we have∑
2

:= 2
∑

1≤a,b≤4

εaεb((∇eha
Ω)(ehb, V )2 + (∇eha

Ω)(ehb,JkV )2)

= − tτ2εt

18
(1 + (−1)k) + tτεt

3
(1 + (−1)k)g(σ,W−(σ))

+tεt(‖W−(σ)‖2 − ‖W−‖2) + tεt

(
‖B(σ)‖2 − ‖B‖2

2

)
+(−1)ktεt tr(W− ◦ Sσ)

2 (3.15)
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since(W− ◦ Sσ)(σ) = 0. Now since‖∇Ω‖2
t = εt(

∑
1 +∑2), the lemma follows from

(3.9) and (3.15). �

4. Isotropic Kähler hyperbolic twistor spaces

We now prove the following theorem.

Theorem 4.1. The hyperbolic twistor space (Z, ht,Jk), k = 1,2, is isotropic Kähler if
and only if k = 1,W− = 0,B2

|Λ− = 0 and τt = −12.

Proof. Setting

f(t) = 1

t

[
4 + tτ

3
(2 + (−1)k)

]

h(t) = −2‖W−‖2 − ‖B‖2

2
−
[

2

t2

(
2 + tτ

6

)2
+ τ2

18
(1 + (−1)k)

]

it follows that‖∇Ω‖2
t = 0 if and only if

g(σ,W−(σ))2 = f(t)g(σ,W−(σ)) + 3‖W−(σ)‖2 + ‖B(σ)‖2

+(−1)ktr(W− ◦ Sσ)
2 + h(t) (4.1)

for all σ ∈ Z.
Let

D = {(y1, y2, y3) ∈ R
3|y2

1 − y2
2 − y2

3 > 0},
and‖y‖2 = y2

1 − y2
2 − y2

3. Then(y1/‖y‖, y2/‖y‖, y3/‖y‖) belongs to the hyperboloid
y2

1 − y2
2 − y2

3 = 1 and

σ = y1

‖y‖ s1 + y2

‖y‖ s2 + y3

‖y‖ s3 ∈ Zp.

For simplicity denote byαij the inner productg(si,W−(sj)). ThenEq. (4.1)can be written
in the form

 3∑
i,j=1

αijyiyj




2

= ‖y‖2


 3∑

i,j=1

γijyiyj




for some coefficientsγij. Settingy3 = 0 and comparing coefficients givesα11 = −α22
andα12 = 0. Similarly α11 = −α33 andα13 = 0. On the other hand 0= trW− =
α11−α22−α33 which then givesα11 = α22 = α33 = 0. Hence our equation takes the form

4α2
23y

2
2y

2
3 = (y2

1 − y2
2 − y2

3)


 3∑

i,j=1

γijyiyj


 ,
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which clearly implies thatα23 = 0. Thusg(si,W−(sj)) = 0 for all 1 ≤ i, j ≤ 3 giving
thatW− = 0.

Eq. (4.1)now takes the form

‖B(σ)‖2 = 1
2‖B‖2 + g(t), (4.2)

where

g(t) = 2

t2

(
2 + tτ

6

)2
+ τ2

18
(1 + (−1)k).

Note thatg(t) ≥ 0 with equality if and only ifk = 1 andtτ = −12.
Applying the same arguments as above we see thatEq. (4.2)is equivalent tog(B(si),B(sj)) =

0 for 1 ≤ i �= j ≤ 3 and

‖B(s1)‖2 = −‖B(s2)‖2 = −‖B(s3)‖2 = 1
2‖B‖2 + g(t).

Since

‖B(s1)‖2 − ‖B(s2)‖2 − ‖B(s3)‖2 = 1
2‖B‖2,

we get

‖B(s1)‖2 = −‖B(s2)‖2 = −‖B(s3)‖2 = −1
2g(t).

Suppose now thatg(t) > 0 and note that if‖x‖2 ≥ 0 and‖y‖2 ≥ 0, we have〈x, y〉2 ≥
‖x‖2‖y‖2. Then

0 = 〈B(s2),B(s3)〉2 ≥ ‖B(s2)‖2‖B(s3)‖2 = (1
2g(t))

2,

a contradiction. Thereforeg(t) = 0, i.e.k = 1, τt = −12 andg(B(si),B(sj)) = 0 for all
i, j. Finally sinceB : ∧2TM → ∧2TM is a symmetric operator it follow thatB2

|Λ− = 0. �

5. Examples of neutral self-dual metrics with B2 = 0

To illustrate the phenomena of the theorem of the preceding section, we provide examples
of neutral self-dual metrics withB2 = 0 for whichB �= 0. We do not know of examples
with B2

|Λ− = 0 butB2 �= 0. We give two classes of examples; in the first class we have

W = 0 and in the second class we haveW− = 0 butW+ �= 0.
Let G be a Lie group with Lie algebrag defined by

[E1, E2] = αE2 + βE3, [E1, E3] = γE2 + δE3, [E1, E4] = pE4,

[E2, E3] = qE4, [E2, E4] = 0, [E3, E4] = 0

together with the condition(α + δ − p)q = 0 which gives the Jacobi identity. Define a
neutral left-invariant metricg onG in terms of the dual basis{Ei} by

g = E1 ⊗ E1 + E2 ⊗ E2 − E3 ⊗ E3 − E3 ⊗ E3.
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It is now straightforward to compute the Levi-Civita connection and the curvature tensor
of g. This in turn enables one to compute the curvature operatorR : ∧2TG → ∧2TG with
respect to the bases{s̄1, s̄2, s̄3} and{s1, s2, s3} of ∧+ and∧−, respectively. For the study of
B we need:

g(R(s1), s̄1) = 1
4(β

2 − γ2) + 1
2(β(β − γ)) + pδ − α2 − 1

4q
2,

g(R(s1), s̄2) = βδ − αγ + 1
2p(β − γ), g(R(s1), s̄3) = 0,

g(R(s2), s̄1) = βδ − αγ + 1
2p(β − γ),

g(R(s2), s̄2) = 1
4(β

2 − γ2) + 1
2(γ(β − γ)) + δ2 − pα + 1

4q
2,

g(R(s2), s̄3) = 0, g(R(s3), s̄1) = 0,

g(R(s3), s̄2) = 0, g(R(s3), s̄3) = p2 − 3
4q

2 − 1
4(β − γ)2 − αδ.

For the study ofW− we need:

g(R(s̄1), s̄1) = 1
4(β

2 − γ2) + 1
2β(β − γ) − αq + 1

4q
2 − α2 − pδ,

g(R(s̄1), s̄2) = βδ − αγ + 1
2(β − γ)q − 1

2p(β − γ), g(R(s̄1), s̄3) = 0,

g(R(s̄2), s̄2) = 1
4(β

2 − γ2) + 1
2γ(β − γ) + δ2 + pα + δq − 1

4q
2,

g(R(s̄2), s̄3) = 0, g(R(s̄3), s̄3) = p2 − pq + 3
4q

2 + 1
4(β − γ)2 + αδ.

For the study ofW+we need:

g(R(s1), s1) = 1
4(β

2 − γ2) + 1
2β(β − γ) + αq + 1

4q
2 − α2 − pδ,

g(R(s1), s2) = βδ − αγ − 1
2(β − γ)q − 1

2p(β − γ), g(R(s1), s3) = 0,

g(R(s2), s2) = 1
4(β

2 − γ2) + 1
2γ(β − γ) + δ2 + pα − δq − 1

4q
2,

g(R(s2), s3) = 0, g(R(s3), s3) = p2 + pq + 3
4q

2 ∗ ∗ + 1
4(β − γ)2 + αδ.

We again recall the decomposition of the curvature operator

R = 1
6τI + B+W+ +W−

written as

R =
( 1

6τI +W+ B
∗B 1

6τI +W−

)
,

where we have made the standard identifications, especially ofB with(
0 B

∗B 0

)
.

Settingbji = g(R(si), s̄j) and recalling that the induced metrics on∧− and ∧+ have
signature(+,−,−), the matrices forB and its adjoint∗B are

 b11 b12 0
−b21 −b22 0

0 0 −b33


 ,


 b11 b21 0

−b12 −b22 0
0 0 −b33


 .
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Thus the condition forB2
|Λ− to vanish becomes


b2

11 − b2
21 b11b12 − b21b22 0

−b11b12 + b21b22 b2
22 − b2

12 0

0 0 b2
33


 = 0.

From here we see thatB2
|Λ− will vanish if and only if

g(R(s1), s̄1) = εg(R(s1), s̄2), g(R(s2), s̄2) = εg(R(s2), s̄1), g(R(s3), s̄3) = 0,

whereε = ±1. Similarly we see that self-duality becomes

g(R(s1), s2) = 0, g(R(s1), s1) = −g(R(s2), s2) = −g(R(s3), s3).

Since the Jacobi identity leads to the condition(α+ δ−p)q = 0, we first consider the case
q = 0. We then have the following equations

1
4(β

2 − γ2) + 1
2β(β − γ) + pδ − α2 = ε(βδ − αγ + 1

2p(β − γ)), (5.1)

1
4(β

2 − γ2) + 1
2γ(β − γ) + δ2 − pα = ε(βδ − αγ + 1

2p(β − γ)), (5.2)

p2 − 1
4(β − γ)2 − αδ = 0, (5.3)

βδ − αγ − 1
2p(β − γ) = 0, (5.4)

β2 − γ2 = α2 − pα + pδ − δ2, (5.5)

β(β − γ) = α2 + pδ − p2 − αδ. (5.6)

Eqs. (5.5) and (5.6)readily yield

γ(β − γ) = p2 + αδ − pα − δ2.

Substituting this and(5.6) into (5.3)we have

0 = 1
4(3p + α + δ)(2p − α − δ).

The casep = −(1/3)(α+δ) leads to a contradiction and we study the casep = (1/2)(α+δ).
If p = 0, the system is easy to solve and givesB = 0. Forp �= 0, introduce a parameterx
by α = xp and thenδ = (2 − x)p. Adding(5.1) and (5.2), and using(5.4), we get

β2 − γ2 + 6p2 − 6xp2 = 2εp(β − γ),

which upon comparing with(5.5)yields

β − γ = 2εp(1 − x).

On the other hand, withα = xp andδ = (2 − x)p, Eq. (5.4)is

(3
2 − x)β + (1

2 − x)γ = 0.
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Therefore

α = xp, δ = (2 − x)p, β = εp(1
2 − x), γ = εp(x − 3

2),

and one can easily check that these satisfy Eqs. (5.1)–(5.6). Thus, with respect to the basis
{s̄1, s̄2, s̄3 s1, s2, s3} of ∧2TG = ∧+ ⊕ ∧−, the curvature operator is given by

R = p2




−2 0 0 2(1 − x) 2ε(1 − x) 0

0 −2 0 −2ε(1 − x) −2(1 − x) 0

0 0 −2 0 0 0

2(1 − x) 2ε(1 − x) 0 −2 0 0

−2ε(1 − x) −2(1 − x) 0 0 −2 0

0 0 0 0 0 −2




.

Therefore the metric is self-dual and, forx �= 1, we haveB2 = 0 butB �= 0. Note also that
we can also considerpas a parameter in the Lie algebras, so considering the Lie algebras and
metric together we have a two-parameter family of examples. Finally the scalar curvature
in these examples is−12p2 and takingt = 1/p2 we have that the hyperbolic twistor space
(Z, h1/p2,J1), is isotropic Kähler but not indefinite Kähler.

We now turn to cases whereα + δ − p = 0 but q �= 0; we also assumep �= 0. The
equations forB2

|Λ− are

1
4(β

2 − γ2) + 1
2β(β − γ) + αδ + δ2 − α2 − 1

4q
2 = ε(3

2βδ − 3
2αγ + 1

2αβ − 1
2δγ),

(5.7)

1
4(β

2 − γ2) + 1
2γ(β − γ) + δ2 − α2 − αδ + 1

4q
2 = ε(3

2βδ − 3
2αγ + 1

2αβ − 1
2δγ),

(5.8)

α2 + αδ + δ2 − 3
4q

2 − 1
4(β − γ)2 = 0, (5.9)

and those dealing with self-duality are

βδ − αγ − βq + γq − αβ + δγ = 0, (5.10)

β2 − γ2 = −αq + δq, (5.11)

β(β − γ) = −2αδ − q2 − 2αq − δq. (5.12)

Eqs. (5.11) and (5.12)readily give

γ(β − γ) = 2αδ + q2 + αq + 2δq, (5.13)

and then subtracting(5.13)from (5.12)gives

(β − γ)2 = −2q2 − 3(α + δ)q − 4αδ. (5.14)

Substituting(5.9)into the difference of(5.7) and (5.8)we haveq = ±(α+ δ) and returning
to (5.9), (α− δ)2 = (β − γ)2. If q = α+ δ, (5.14)readily givesq = 0, so we only consider
q = −α − δ.
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If q = −α − δ andα − δ = β − γ, Eq. (5.10)givesβ(α − δ) = α(α − δ). The case
α = δ leads toB = 0. If α �= δ, β = α and thereforeγ = δ. One can now check that
the equations forB2

|Λ− = 0 and self-duality are satisfied withε = −1. The matrix of the
curvature operator is

R =




β2 − γ2 γ2 − β2 0 1
2(γ

2 − β2) 1
2(β

2 − γ2) 0

β2 − γ2 γ2 − β2 0 1
2(γ

2 − β2) 1
2(β

2 − γ2) 0

0 0 −3(β + γ)2 0 0 0
1
2(γ

2 − β2) 1
2(β

2 − γ2) 0 −(β + γ)2 0 0
1
2(γ

2 − β2) 1
2(β

2 − γ2) 0 0 −(β + γ)2 0

0 0 0 0 0 −(β + γ)2




,

and the matrix forW+ is

W+ =




2β(β + γ) γ2 − β2 0

β2 − γ2 2γ(β + γ) 0

0 0 −2(β + γ)2


 .

Thus we have a two-parameter family of examples withB2 = 0 andW �= 0.
Similarly q = −α − δ andα − δ = γ − β leads toβ = −α, γ = −δ andε = 1. The

resulting curvature operator is

R =




β2 − γ2 β2 − γ2 0 1
2(γ

2 − β2) 1
2(γ

2 − β2) 0

γ2 − β2 γ2 − β2 0 1
2(β

2 − γ2) 1
2(β

2 − γ2) 0

0 0 −3(β + γ)2 0 0 0
1
2(γ

2 − β2) 1
2(γ

2 − β2) 0 −(β + γ)2 0 0
1
2(β

2 − γ2) 1
2(β

2 − γ2) 0 0 −(β + γ)2 0

0 0 0 0 0 −(β + γ)2




again giving a two-parameter family of examples withB2 = 0 andW �= 0.
In the last two examples the scalar curvature isτ = −6(β + γ)2 and the corresponding

hyperbolic twistor space(Z, ht,J1) for t = 2/(β + γ)2 is a non-Kähler isotropic Kähler
manifold.
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